HYENA

 

°

Trefwoord

Aardwolf

Meer afbeeldingen

  1. De aardwolf is een hyena uit zuidelijk en oostelijk Afrika. Het is de enige levende soort uit de onderfamilie aardwolven; de aardwolf verschilt sterk van andere hyena’s en kan worden beschouwd als het buitenbeentje van de familie. Wikipedia

Bruine hyena (Hyaena brunnea syn. Parahyaena brunnea Meer afbeeldingen

  1. De bruine hyena of strandwolf is een van de vier nog levende soorten hyena’s. Hij is nauw verwant aan de gestreepte hyena en samen worden ze ook wel tot hetzelfde geslacht, Hyaena, gerekend. Wikipedia

Civetkat

  1. Civetkatten zijn een geslacht van kleine, slank gebouwde roofdieren die voorkomen in Zuidoost-Azië. Wikipedia

Gevlekte hyenaMeer afbeeldingen

  1. De gevlekte hyena is de grootste, agressiefste en de luidruchtigste hyenasoort. In grote delen van Afrika is het het meest voorkomende grote roofdier. De gevlekte hyena is de enige nog levende soort uit het geslacht Crocuta. Wikipedia

Gestreepte hyenaMeer afbeeldingen

  1. De gestreepte hyena is één van de vier hyenasoorten. Ze danken hun naam aan de zwarte strepen over het hele lichaam. Wikipedia

HyaenadonMeer afbeeldingen

  1. Hyaenodon is een geslacht van uitgestorven Creodonta dat miljoenen jaren heeft geleefd en op bijna alle continenten voorkwam. Er zijn zo’n vijftien soorten in dit geslacht benoemd. Er zijn vele soorten gevonden, die sterk in grootte verschilden. Wikipedia

OxyaenaMeer afbeeldingen

  1. Oxyaena is een uitgestorven carnivoor zoogdier behorend tot de familie Oxyaenidae van de Creodonta. Oxyaena had een lichaamslengte van ongeveer een meter. Het was één van de algemeenste roofzoogdieren van de Noord-Amerika in het Wasatchian. Wikipedia

 

 

°

LINKS

http://www.pinterest.com/tsjok/hyenas/

 

Kruger park

http://www.bryerpatch.com/news/africa2000/animals.htm

 

Hyena

Hyena baby

pregnant hyena

Spotted hyena with pup in Kruger National Park, South Africa

Playing with mama

°

AFSTAMMING  & EVOLUTIE

De eerste  hyena achtigen

the early  cat line

 

 

 

 

Hyanodon.JPG

 

hyanodon

 

http://www.ansp.org/museum/leidy/paleo/hyaenodon.php

http://fingerlakesfossilfarm.org/mammal_fossils.htm

hyanodon skeleton

hyaenodon.skeleton jpg
Creodonts are an extinct group of carnivorous mammals that were long thought to be the ancestors of modern Carnivora. This is no longer thought to be the case. Creodonts were the dominant group of carnivorous mammals in the early Tertiary and were quite diverse. They ranged from very large, wolf-like animals as Hyaenodon to small mongoose-like forms such as Prototomus vulpeculus.

Creodonts lived in North America, Asia, Europe, and Africa.

.

civetkat

 

 

 

 

 

http://nl.wikipedia.org/wiki/Civetkatten

De vroegste hyena’s leken sterk op de hedendaagse Civetkatten, maar toen de bossen plaatsmaakten voor open vlaktes, werden de hyena’s snel rennende roofdieren in de Oude Wereld, vergelijkbaar met de honden in Noord-Amerika.

Zo’n 15 miljoen jaar geleden waren er ongeveer 30 hondachtige hyenasoorten, maar toen veranderde het klimaat. Naarmate de hyena’s in aantal terugliepen, trokken de honden (die ook leden onder de kou) vanuit Noord-Amerika naar het zuiden over de nieuwgevormde landbrug.

De hyena’s hebben zich weliswaar aangepast aan de nieuwe omstandigheden, maar omdat de honden reeds bezit hadden genomen van hun leefmilieu moesten ze zich ontwikkelen tot bottenkrakers (of termieteneters).

Phylogeny

nested hierarchy and phylogeny   of  cat  , bear and dog branch

 

Cat / bear /dog branches

 

phylogeny hyanidae

 

 

http://www.hyaenidae.org/uploads/images/kay%20phylogeny.jpg

http://www.hyaenidae.org/ancient-hyaenas.html

ICITHERIUM

ichterium

 

 

De eerste hyena’s verschenen 15 miljoen jaar geleden in het Midden-Mioceen en ontstonden vermoedelijk in Afrika, ze worden beschouwd als verwanten van de katten.

De hyena Chasmoporthetes was de enige van zijn familie die ook in Noord-Amerika voorkwam dit ten tijden van het Pleistoceen.

Dit genus had zich ook verspreidde ze zich over Azië, Europa en Afrika.

 

 

 

Chasmoporthetes

 

chasmaporthetes

 

 

Gemaakt 29-12-04

PACHYCROCUTA

 

http://en.wikipedia.org/wiki/Pachycrocuta

 

PACHYCROCUTA

 

 

 

 

 

Pachycrocuta brevirostris/ Carnivore /

pachycrocuta  and homo erectus

 

Where: Eurasia and eastern Africa/   MiddlePliocene to Middle Pleistocene

The Pachycrocuta brevirostris was largest of the prehistoric hyenas, and is frequently called: the Giant Hyena. It was about 100 cm tall and weighed about 190 kg. this would make it the largest hyena to have ever lived. It was a small-pack hunter of large animals, but it probably preferred to scavenge, because it was a heavyset animal not built for chasing prey over long distances.

 

hyena's

http://nl.wikipedia.org/wiki/Hyena’s

carnivoraforum

 

carn

 

carnovofo

 

 

http://carnivoraforum.com/topic/9331029/1/

Spelonkhyena

Crocuta crocuta spelaea

Species: Crocuta crocuta Subspecies: Crocuta crocuta spelaea

spelonkhyena  schedel

 

 

The Cave Hyena (Crocuta crocuta spelaea)

is an extinct subspecies of spotted hyena (Crocuta crocuta) native to Eurasia, ranging from Northern China to Spain and into the British Isles. Though originally described as a separate species from the spotted hyena due to large differences in fore and hind extremities, genetic analysis indicates no sizeable differences in DNA between Pleistocene cave hyena and modern day spotted hyena populations. It is known from a range of fossils and prehistoric cave art. With the decline of grasslands 12,500 years ago, Europe experienced a massive loss of lowland habitats favoured by cave hyenas, and a corresponding increase in mixed woodlands. Cave hyenas, under these circumstances, would have been outcompeted by wolves and humans which were as much at home in forests as in open lands, and in highlands as in lowlands. Cave hyena populations began to shrink after roughly 20,000 years ago, completely disappearing from Western Europe between 14-11,000 years ago, and earlier in some areas.

 

 

 

 

 

skull spelonk hyenaA nearly complete skull of Crocuta spelaea from Europe. Photo from Diedrich & Zak (2006).

_

The main distinction between the spotted hyena and the cave hyena is grounded on different lengths of the hind and fore limb bones. The humerus and femur are longer in the cave hyena, indicating an adaptation to a different habitat to that of the spotted hyena. It is unknown if they showed the same sexual dimorphism of the spotted hyena. It has been estimated that they weighed 102 kg (225 lbs).

Little is known of their social habits. It is widely accepted that they used caves as dens, although sites in the open-air are also known. There is no indication of cave hyenas living in large clans or on a more solitary basis, though large clans are not considered likely in their Pleistocene habitat.

Crocuta_crocuta_spelaea_

 

 

 

 

 

 

grothyena schedel

 

http://carnivoraforum.com/topic/9331026/1/

 

°

EXTANTE  HYAENA’S

 

extante soorten

 

 

°gevlekte hyena

 

gevlekte hyena

Mensen zijn altijd weer verrast als ze horen dat hyena’s deel uitmaken van de katachtigen en helemaal niet nauw verwant zijn met de honden.Dat komt omdat ze binnen de katachtigen  de tegenhangers van honden zijn en zich tot langeafstandslopers hebben ontpopt op de vlaktes. Vandaag de dag zijn er nog maar vier hyenasoorten over. Drie daarvan hebben de “klassieke” verbrijzelende kaken en zijn jagers/aaseters.De vierde is de aardwolf, die zich voedt met termieten.

gevlekte hyena's

 

Hyena welpen

welpen

lachende hyena

lachende volwassen hyena

Hyena’s communiceren met behulp van bacteriën

12 november 2013 Caroline Kraaijvanger5

's nachts

Masai Mara National Reserve

 

 

Masai Mara National Reserve in Kenya

Hyenas recognize each other’s smell — or perhaps the smell of each other’s microbiome.  // ANUP SHAH / NATUREPL.COM

°

Hyena’s laten boodschappen aan elkaar achter in de vorm van uitwerpselen. Wetenschappers hebben nu ontdekt dat die uitwerpselen veel meer bacteriën bevatten dan gedacht en dat die bacteriën de boodschap van de hyena overdragen.

Wanneer hyena’s uitwerpselen achterlaten in het gras dan bevatten die zuur ruikende signalen héél veel informatie die andere dieren kunnen ‘lezen’,” vertelt onderzoeker Kevin Theis. “Hyena’s kunnen zo snel een gedetailleerde boodschap achterlaten en weer gaan. Het is een soort prikbord waarop te zien is wie er in de buurt zijn en hoe het met die hyena’s gaat.”

Wetenschappers hebben die geurige boodschappen van de hyena’s nu grondig bestudeerd. Ze ontdekten zo onder meer dat deze veel meer bacteriën bevatten dan gedacht. En dat die bacteriën degenen zijn die de boodschap overbrengen. “De plekken waar de hyena’s hun uitwerpselen neerleggen zijn prikborden, de uitwerpselen zijn visitekaartjes en de bacteriën zijn de inkt die letters en woorden vormen en informatie aan de bezoekers van het prikbord informatie bieden over diegene die het prikbord bezocht heeft. Zonder de inkt is het gewoon een bord met lege, niet-informatieve kaartjes.”  (1)

De geuren van de uitwerpselen verschilden sterk. Die verschillen bleken nauw samen te hangen met de soort hyena, het geslacht en de mate van vruchtbaarheid.

Geuren vertellen hyena’s dus iets over andere hyena’s. En die geuren worden geproduceerd door de bacteriën, zo schrijven de onderzoekers in het blad Proceedings of the National Academy of Sciences.

 

Bronmateriaal:

“Bacteria may allow animals to send quick, voluminous messages”

 – MSU.edu                               

 

 http://msutoday.msu.edu/news/2013/bacteria-may-allow-animals-to-send-quick-voluminous-messages/

 

 Hyenas scent posts

Hyenas scent posts

may be short, relatively speaking, yet they convey an encyclopedia of information about the animals that left them. (Credit: Courtesy of MSU)

 

°

De bacteriën die in de geurklieren van hyena’s leven, zijn bepalend voor de geuren waarmee de dieren signalen afgeven aan elkaar.

De samenstelling van de micro-organismen bij gevlekte en gestreepte hyena’s is verschillend, zodat deze verschillende soorten hun soortgenoten aan hun geur kunnen herkennen.

 

Ook verandert de structuur van de bacteriën als vrouwtjes klaar zijn om te paren, zodat ze op dat moment een specifieke geur uitdragen.

 

Lichaamsvocht

De wetenschappers slaagden erin om met een speciale techniek een zeer groot aantal bacteriën in de geurklieren van hyena’s in kaart te brengen.

Met deze informatie kunnen ze verschillen meten in het lichaamsvocht dat hyena’s achterlaten op gras om geuren te communiceren.

 

http://www.sciencedaily.com/releases/2013/11/131111161510.htm

 

“De diversiteit van de bacteriën is genoeg om de origine van deze signalen te verklaren”, verklaart Theis op Nature News. http://www.nature.com/news/smelly-microbes-help-hyenas-to-communicate-1.14141

 

 

°

De wetenschappers vermoeden dat ook andere diersoorten gebruik maken van micro-organismen om verschillende geuren te communiceren. Meer onderzoek moet uitwijzen of dat ook echt zo is.

 

 

  • De term “visitekaartjes” is nogal vrij van interpretatie, haha. Maar goed, volgens mij kan deze studie naar behoorlijk wat diersoorten geëxtrapoleerd worden, omdat de ontlasting van iedereen uniek is en zeer veel over een individu kan zeggen. Het is namelijk een afbraakproduct van een systeem met ontelbaar veel processen.  Als je dat nauwkeurig gaan analyseren, krijg je een behoorlijke uitgebreide anamnese

Bruine hyena

 

 

Engels : Brown hyena
Duits : Schabrackenhyäne, Braune Hyäne, Strandwolf
Frans : La hyène brune

De bruine hyena of strandwolf (Hyaena brunnea syn. Parahyaena brunnea) is een van de vier nog levende soorten hyena’s.
Hij is nauw verwant aan de gestreepte hyena en samen worden ze ook wel tot hetzelfde geslacht, Hyaena, gerekend.

De wetenschappelijke naam van deze soort is voor het eerst beschreven door Thunberg (Carl Peter Thunberg was een Zweedse natuuronderzoeker. Hij was een student van Carolus Linnaeus.) in 1820.

De bruine hyena leeft in westelijk Zuid-Afrika, Zimbabwe, Namibië en Zuid-Angola.
Hij komt meer dan de andere hyena’s in woestijnen voor, voornamelijk in de Kalahari en de Namibwoestijn.
Ook komt hij voor in drogere, met struiken begroeide steppen en savannes.
Ook langs de woestijnkust van Namibië komen ze geregeld voor.

Bruine hyena

Bruine hyena
auteur : Southafrica.net op
www.dinosoria.com

De bruine hyena heeft een ruige, donkerbruine tot zwarte vacht, met een lichtgele kraag om de hals, die als maan dient bij volwassen dieren, en een grijzig gezicht.
Over de poten lopen witte horizontale strepen.
De staart is kort en donker van kleur.
De losse, ruige vacht kan bij conflicten worden opgezet, waardoor het dier groter en indrukwekkender lijkt.

Hij wordt ongeveer 110 tot 161 centimeter lang, met een 21 tot 30 centimeter lange staart.
De schouderhoogte bedraagt zo’n 72 tot 88 centimeter.
De bruine hyena weegt tussen de 28 en de 55 kilogram.
Mannetjes worden groter dan vrouwtjes.

 

bruine hyena Hyaena brunnea

Hyaena brunnea
auteur : Sally London op http://www.dinosoria.com    
CC 3.0

De bruine hyena is een nachtdier.
Overdag rust hij in een zelfgegraven hol (tot 150 centimeter diep), een natuurlijk hol tussen de rotsen of in het hol van een aardvarken.

Hij eet voornamelijk aas, maar ook afgevallen vruchten.
Soms maken ze actief jacht op kleine en middelgrote zoogdieren als de springhaas, jonge antilopen en de grootoorvos, kleine gewervelden als kikkers en hagedissen en ongewervelden.
Langs de kust van Namibië zoeken ze naar dode welpen van de Zuid-Afrikaanse zeebeer, aangespoelde walvissen en andere dode zeedieren.
Op de vuilnisbelten van Johannesburg, Pretoria en andere grote steden zoeken ze ook naar voedsel.
De bruine hyena eet per dag gemiddeld 2,8 kilogram.

De dieren foerageren alleen, omdat ze zelden voedsel vinden waar meer dan één hyena van kan leven.
Bij grote karkassen houden zich zelden meer dan drie dieren op.
Tijdens het foerageren kunnen ze afstanden afleggen van wel 54 kilometer

 

Brown Hyaena Portrait

De bruine hyena
auteur : © Martin Heigan    

 

Bruine hyena’s kennen geen vaste sociale structuur.
Ze leven solitair, in paren of in kleine, losse groepen, die kunnen bestaan uit zes tot vijftien dieren, en bestaan uit tot drie volwassen mannetjes en vijf volwassen vrouwtjes.
Als de dieren oud genoeg zijn om op zichzelf te staan, kunnen ze bij de groep blijven of gaan rondzwerven.
Sommige dieren blijven hun hele leven bij dezelfde troep. Een groep houdt een los territorium bij, die veelvuldig wordt gemarkeerd.
Markeren gebeurt door geurvlaggen en latrines(vaste plaats waar ze hun behoefte doen).

Bruine hyena’s planten zich het gehele jaar door voort.
Het vrouwtje paart met meerdere mannetjes, zowel groepsleden als rondzwervende mannetjes.
Een vrouwtje krijgt per worp één tot vijf (gemiddeld twee tot vier) jongen na een draagtijd van 120 dagen.
Ze worden blind en doof geboren in een ondergronds hol.
Het vrouwtje zondert zich de eerste paar maanden af van de rest van de groep.
Meestal krijgt één vrouwtje in de groep een nest, maar ook andere vrouwtjes mogen zich voortplanten.
Jongen worden in zulke situaties na enkele maanden door alle zogende vrouwtjes gezoogd, en de jongen worden bij elkaar verzorgd in een gezamenlijk hol.
De jongen worden twaalf tot vijftien maanden lang gezoogd.
Na drie maanden eten ze hun eerste vaste voedsel.

Na 18 maanden verlaten ze meestal het nest.
Vrouwtjes zijn na twee tot drie jaar geslachtsrijp.

Advertenties

ATACAMA walvis massagraf

°

  

 zie onder Geologie

°

°

Mysterie van fossiel massagraf opgehelderd

3D relief map of the Atacampa Plateau.

Generalized, modern vegetation zones in the region of Quebrada del Chaco.

Generalized, modern vegetation zones in the region of Quebrada del Chaco.

Location: The bones were found near Copiapo, around 440 miles north of Chile's capital, Santiago

Location: The bones were found near Copiapo, around 440 miles north of Chile’s capital, Santiago

AP

Findings: A video still shows Minister of National Assets Catalina Parot, using crutches, looking at one of the prehistoric whale fossils in the desert

wo 26/02/2014   Kathleen Heylen
°
Wetenschappers menen te weten waarom tientallen walvissen miljoenen jaren geleden aangespoeld zijn in Chili en er een fossiel massagraf gevormd hebben. Giftige algen  zijn waarschijnlijk   de grote schuldige?

De goed bewaarde, miljoenen jaren oude walvisgeraamtes liggen in de Atacama-woestijn …. Volgens de wetenschappers is het kerkhof ontstaan door vier  verschillende massastrandingen in de loop van   enkele duizenden jaren 

°

Het was een van de meest verbazingwekkende Paleontologische vondsten van de voorbije jaren: een massagraf van walvissen van meer dan 5 miljoen jaar oud in de Atacama-woestijn in Chili.

Al sinds 2010 was bekend dat in dat gebied resten van fossiele walvissen te vinden waren. Tijdens graafwerken voor de Pan-Amerikaanse snelweg vlakbij werden tal van fossiele walvisbeenderen ontdekt. De plek verwierf de bijnaam “Cerro Ballena” (‘walvisheuvel”).

atacama discovery

+8

Discovery: The researchers believe the fossilized remains could have accumulated over a long period of time, between two million and seven million years ago

Read more: http://www.dailymail.co.uk/news/article-2063973/Whales-desert-Prehistoric-bones-unearthed-Chiles-Atacama-desert.html#ixzz2uRgXg2Gm
Follow us: @MailOnline on Twitter | DailyMail on Facebook

AP

Een jaar later kregen Amerikaanse en Chileense wetenschappers de kans om een deel van de site uitgebreid te onderzoeken, toen er gewerkt werd aan de verbreding van de snelweg. Ze kregen slechts twee weken de tijd voor alle veldwerk, voor de site werd dichtgegooid en overgoten met beton, maar slaagden erin in die korte periode een indrukwekkende vondst te noteren.

°

De site bevatte de restanten van tien verschillende soorten gewervelde zeedieren in vier aparte lagen in de bodem. Daarbij een soort waterluiaard, twee soorten snoeken, twee soorten robben en minstens vier soorten walvissen. Pronkstukken van Cerro Balleno waren de nog relatief intacte individuele skeletten van meer dan 40 walvissen.

De wetenschappers maakten onder meer digitale 3D-modellen van de resten die ze aantroffen en namen beenderen weg voor verder onderzoek.

Investigators from the Smithsonian Institution laser-scan one of the desert whales in the Atacama Desert, to create and preserve a digital image of it.

°

  

Een gemeenschappelijke, plotse dood

°

Een van de vele vragen die de site opwierp, was hoe de zeedieren daar beland waren, en in zulke grote aantallen. De wetenschappers ging er al snel van uit dat er  gemeenschappelijke, plotse doodsoorzaken  moesten  zijn.

°

Bijna alle walvisskeletten waren zo goed als intact en lagen bijna allemaal op dezelfde manier gepositioneerd, bijvoorbeeld met hun snuit in dezelfde richting en ondersteboven.(met de buik omhoog dus )

walvisgraf

foto:Adam Metallo.

De moordenaar van de veertig walvissen is verrassend eenvoudig: alg.

Het Andesgebergte zou flink wat ijzer in de oceaan hebben doen belanden. Het zorgde ervoor dat de algen in grote overvloed gingen bloeien en samen een dodelijk gif produceerden. Dieren die in zee leefden, kregen dat gif door inademing(in het geval van de vissen ) of door  ervan te eten (zeezoogdieren ), binnen. Daarop begaven hun organen het en vonden de dieren al snel de dood. Dat meldt het Smithsonian.

Op de rug
De onderzoekers baseren hun conclusies onder meer op het feit dat de walvissen met hun buik naar boven ontdekt zijn.

“Net als de bultruggen en blauwe vinvissen van vandaag de dag hadden deze prehistorische walvissen een grote keelzak,” l

egt onderzoeker Nicholas Pyenson uit. Wanneer de dieren sterven en beginnen te ontbinden, vult die keelzak zich met gassen, waardoor de walvis – wanneer deze in het water sterft – met zijn buik naar boven gaat drijven.

Dat de walvissen in de Atacama-woestijn met de buik naar boven liggen, suggereert dus dat ze in zee zijn gestorven.

“Deze enorme hompen vlees strandden op een wad, maar er waren toen nog geen grote roofdieren op het land die de karkassen uit elkaar konden halen en de botten weg konden dragen.” Naar verloop van tijd verging het vlees van de walvissen en werden de botten bedekt met zand.

Het enorme walvisgraf in Chili.  Foto: Adam Metallo.

Het enorme walvisgraf in Chili. Foto: Adam Metallo.

Algen
Een andere aanwijzing dat algen de boosdoener waren, is het feit dat op de skeletten fossiele algenmatten zijn ontdekt.

Deze matten ontstaan wanneer algen overvloedig bloeien.

“Tegenwoordig promoot opgelost ijzer de bloei van schadelijke algen en de Andes is rijk aan ijzer. Dus stellen we dat de bergen ten oosten van dit gebied de bron van de drijvende kracht achter deze bloeiende algen zijn.”

De onderzoekers ontdekten ook dat de algen meerdere keren genadeloos toesloegen. In het gebied zijn grote hoeveelheden fossiele resten van verschillende dieren in verschillende aardlagen aangetroffen. Het suggereert dat de algen zeker vier verschillende keren op dezelfde plek, in een periode van 10.000 tot 16.000 jaar toesloegen.

°

Grote hoeveelheden van dergelijke algen eten kan een snelle dood veroorzaken. De opbouw van de toenmalige kustlijn in Cerro Ballena leidde ertoe dat de dode en stervende dieren slechts op een kleine oppervlakte in een riviermonding aanspoelden.

Vermoedelijk door stormgolven zijn de karkassen op hogergelegen zandgronden beland, waar ze in de loop van miljoenen jaren begraven raakten. Dat plaatste ze buiten bereik van aaseters die in zee leven. Omdat ze in woestijnachtig gebied aanspoelden, waren er ook slechts weinig landdieren die de lichamen konden aanvreten.

°

Wetenschappers hebben nog geen “smoking gun”

°De wetenschappers benadrukken dat het slechts gaat om een werkhypothese (1) . Ze kunnen niet met 100 procent zekerheid zeggen dat de giftige algen er de oorzaak van zijn dat de dierven stierven. Het team vond meerdere korrels en laagjes ijzeroxide in de bodem die zouden kunnen wijzen op de aanwezigheid van algen.

Specifieke cellen van algen werden echter NIET  aangetroffen, dat zou pas een “smoking gun” zijn, luidt het.

°

Volgens de onderzoekers omvat de site van Cerro Ballena nog honderden fossiele restanten die nog moeten worden blootgelegd en onderzocht. Er lopen ook nog verschillende onderzoeksprojecten naar de resten die al zijn ontgonnen.

°

Het Smithsonian National Museum of Natural History in Washington DC heeft heel wat onderzoeksgegevens online geplaatst op de website cerroballena.si.edu.

AP
Preparation: A paleontologist encases a whale fossil to be taken to Chile’s Paleontological Museum of Caldera. Most of the fossils are baleen whales measuring 25ft long
AP
AP
‘Extraordinary’: Prehistoric bones belonging to 75 whales have been found in the Atacama desert near Copiapo, Chile. 
°
Bronmateriaal =
Zie ook –>
  • Walvissen
  • een ander walviskerkhof  in de Andes  bevind zich in  de Pisco formtie van Peru                                                                         http://origins.swau.edu/who/chadwick/Pisco.pdf                                          Afbeeldingen van pisco formation whales                                                                         http://en.wikipedia.org/wiki/Piscobalaena
°
OPMERKINGEN  —> 
°
(1)  maw –>  Er is nog niet voldoende   bewijs -materiaal in de fossielen om van een hoogstwaarschijnlijke  hypothese te kunnen spreken ... en al zeker niet van een “theorie ” ( = zoals gebruikelijk  wordt in de  media  een “theorie” gelijkgesteld  aan een   “verantwoorde ” gissing (=educated guess (*) // Een theorie  stoelt echter  op  heel wat meer =   nml  :  een theorie is   een bundeling  ( een synthese )van hypothesen  die voldoende onderbouwd zijn   en dat ook bij machte is deze hypothesen met een model  te verklaren   zodat er voorspellingen  kunnen worden gemaakt en de bekomen  verwachtingen toetsbaar zijn  ;waardoor  de theorie ook kan worden gefalsifeerd volgens de wetenschappelijk noodzakelijke  criteria , in het bijzonder  binnen  het methodisch naturalisme  ) 
°
–> (*) Dat is natuurllijk koren op de molen van IdC-ers  die altijd al beweren dat  “wetenschap ( in het bijzonder evolutie ) is slechts een theorie (= gissing net als alle andere )”
°
Nota  ;
°
—>  Uiteraard is het massagraf in de  chileense woestijn al meermaals  aangehaald  als “bewijs “van een  vloed ( catastrofisme , —> en  zelfs de ” Bijbelse zondvloed” volgens de creationisten , in het bijzonder de Yec’s ) 
°
Enkele  kinderachtige droge  komieken en clowns als  welkom vermaak  en afwisseling ? 
(en ook een deel van de atacama woestijn )
Debunked :
marine fossils in mountains  proof of flood ? 
°
Refuting these crea claims ;
°
Nederlandstalige   trollen van allerlei pluimage op hun plaats gezet ? —>

Aanpassingen aan het klimaat ? keizerpinguin

BIODIVERSITEIT —

I

°

KEIZERPINGUIN

porpoising p-6398-enz

Penguins are divers rather than fliers, but they still understand that air offers less resistance than water. When travelling at the surface, as opposed to chasing food, some species (including the Snares crested, shown here) commonly ‘fly’ out of the water at each thrust of their flippers, getting further than if they stayed in the water. This mode of travel is known as porpoising.

a14c1321b2_1381763393_Maar-je-raadt-het-al-ook-dat-blijven-ze-tot-in-den-treuren-proberen

keizerpinguins 1135250156

Vallende  keizerpinguin 

tumblr_llyntlrmnr1qzwyfio1_500

penguin-falling

WEBCAM en keizerpinguins  

Gemerkte pinguïn heeft het moeilijk

 13 januari 2011  2
Penguin_band
Banded_penguin

Om duizenden pinguïns uit elkaar te kunnen houden, maken wetenschappers vaak gebruik van metalen bandjes met daarop een nummer. Uit een studie naar deze onderzoeksmethode blijkt nu dat die metalen bandjes rondom de flipper het diertje flink in de weg zitten. Sterker nog: pinguïns met zo’n bandje sterven eerder en zetten minder nageslacht op de wereld.

De onderzoekers bestudeerden een groep koningspinguïns en volgden de dieren tien jaar lang. Ze ontdekten dat de pinguïns die met een ijzeren bandje gemerkt hadden 39 procent minder jongen kregen dan pinguïns met een elektronisch bandje. Ook leefden de met ijzer gemerkte pinguïns korter.

Langer onderweg
Maar er is nog meer. De met ijzeren bandjes gemerkte pinguïns laten hun jongen gemiddeld 12,7 dagen op rij in de steek om naar voedsel te zoeken. De andere pinguïns gingen gemiddeld 11,6 dagen op pad. Dat lijkt een klein verschil, maar dat is het niet, zo legt onderzoeker Claire Saraux uit. “Eén dag of twee dagen is een enorm verschil.” De jongen eten namelijk alleen als hun ouders met voedsel terugkomen.

Hinder                                 
Waarschijnlijk hindert het ijzeren bandje de pinguïns sterk tijdens het zwemmen. Uit experimenten blijkt dat een pinguïn met zo’n bandje gemiddeld 24 procent meer energie verbrandt.

De onderzoekers concluderen dat de bandjes eigenlijk niet meer gebruikt moeten worden. Niet alleen de pinguïns hebben er last van. Ook de onderzoeksresultaten kunnen door de bandjes weleens niet kloppen; de dieren gedragen zich immers anders.

Bronmateriaal:
Marking penguins for study may do harm” – Sciencenews.org

—-> waarnemingen/conclusies die gedaan zijn a/d hand van deze bandjes zijn  dus  hoogstwaarschijnlijk grotendeels en   praktisch waardeloos en de pinguins hebben er onder geleden. ….Jammer

Wereldwijd krijgen vogels zonder pardon een ring om hun pootje of vleugel gebonden. Reuze handig voor onderzoekers om individuele dieren in één oogopslag te herkennen, maar voor de vogels zelf zou het wel eens minder goed uit kunnen pakken.

Voor de koningspinguïn op Antarctica bijvoorbeeld.

Waarschijnlijk zorgt het metaal (1)om de vleugel voor extra weerstand wanneer ze in het water aan het jagen zijn. De extra energie die daardoor nodig is om een lekker visje te vangen, komt het nageslacht en de overlevingskansen dus niet ten goede.

Volgens de onderzoekers heeft dit resultaat grote gevolgen voor onderzoeken waarbij vogels op een vergelijkbare manier geringd zijn, voornamelijk pinguïns. Die resultaten kunnen – naar nu blijkt- behoorlijk gekleurd zijn door de negatieve effecten van het ringen. Veel van dat onderzoek gaat over het effect van klimaatverandering op pinguïnpopulaties.

Toch moeten we niet meteen alle geringde vogels over een kam scheren. Een gigantische metalen band zoals bij de pinguïns is nog altijd iets anders dan een klein ringetje om de poot van een koolmees.

Bron: Nature

  • (1)   Wat in het Nature artikel duidelijk wordt beschreven en hier ontbreekt; Het gaat om electronische banden. Banden die de activiteit en plaats van de vogel registreren.

    Overigens zijn er al regels voor. Onder een bepaald gewicht worden de electronische tags niet gebruikt.

    • Maar  of het nu elektronische banden zijn om de vogels te volgen of kleurringen, het resultaat blijft hetzelfde. Dat er al regels zijn, is natuurlijk geweldig, maar dit resultaat kan ook belangrijke gevolgen hebben voor onderzoeksresultaten uit het verleden. En dan met name voor klimaatonderzoek waarbij de gezondheid van een populatie toppredatoren(aan de top van een voedselpyramide ,)zoals de krill  inktbis en vis etende  keizers penguïn, gezien wordt als indicator voor hoe een ecosysteem ervoor staat.

°

Keizerspinguïn duikt op in..Nieuw-Zeeland

 21 juni 2011   4

Hannes Grobe / AWI (via Wikimedia Commons).

Een jonge keizerspinguïn is hopeloos verdwaald en in het warme Nieuw-Zeeland beland. Het is voor het eerst in 44 jaar dat daar een pinguïn opduikt.

Waarschijnlijk heeft de pinguïn zich tijdens de jacht op voedsel teveel mee laten slepen en is deze daardoor verdwaald en in Nieuw-Zeeland beland, zo meldt TVNZ. Het dier behoort tot de nieuwste lichting pinguïns en is dus nog zeer jong.

Peka Peka Beach
De pinguïn kwam aan de Kapiti Coast, ter hoogte van Peka Peka Beach aan land zetten. Dat een pinguïn zo noordelijk opduikt, is heel ongewoon. De laatste keer dat een pinguïn een bezoek bracht aan Nieuw-Zeeland was 44 jaar geleden.

Naar huis
Vooralsnog maakt de pinguïn geen aanstalten om terug naar huis te gaan. Maar deskundigen vermoeden dat het dier vroeg of laat toch weer het water in zal stappen om op zoek te gaan naar zijn eigen vertrouwde leefgebied.

http://www.scientias.nl/keizerspinguin-duikt-op-in-nieuw-zeeland/33476

Bronmateriaal:
‘Amazing’ visit by emperor penguin” – TVNZ.co.nz

 http://tvnz.co.nz/national-news/amazing-visit-emperor-penguin-1-46-video-4253772

Wachtende pinguïn houdt het hoofd koel

Geschreven op 17 augustus 2011 om 14:23 uur door 0

Jonge pinguïns moeten soms maanden op eten wachten. Maar ze houden het hoofd koel. Letterlijk. Dat blijkt uit onderzoek.

De ouders van jonge koningspinguïns gaan op zoek naar eten: een reis die wel vijf maanden kan duren. De jonge pinguïn zit al die tijd stilletjes te wachten.

Zuinig
In die periode is er ook geen voedsel voor de jonge pinguïn en dus moet deze zuinig omgaan met de energie. Wetenschappers hebben nu ontdekt hoe het dier dat doet.

Vijftien graden
De onderzoekers bestudeerden pinguïns van drie tot vier maanden oud. Ze letten met name op de lichaamstemperatuur van de dieren. Tot hun grote verbazing daalde die in de periode dat de jonge pinguïns moesten wachten flink. Hun lichaamstemperatuur daalde soms met wel vijftien graden Celsius. En dat is enorm. Zeker als u in gedachten houdt dat de kleine pinguïn een grote vogel met een gewicht van zo’n tien kilo is. Er zijn wel meer vogels die hun lichaamstemperatuur kunnen laten dalen, maar die zijn veel kleiner.

Overigens is de lichaamstemperatuur van jonge pinguïns ook in andere omstandigheden zeer flexibel. Wanneer ze een lekker koud maaltje voorgeschoteld krijgen, kan de lichaamstemperatuur ook met meer dan tien graden dalen.

Bronmateriaal:
ScienceShot: Baby Penguins Know How to Chill Out” –  Sciencemag.org
De foto bovenaan dit artikel is gemaakt door Mark (cc via Flickr.com).

Waar zijn de keizerspinguïns gebleven?

 07 maart 2011    5
Photo: British Antarctic Survey/ Masons News Service

http://www.cambridge-news.co.uk/Home/How-to-pick-out-a-penguin-13042012.htm

Een kleine kolonie van keizerspinguïns is verdwenen.

De pinguïns leefden op een eiland voor de kust van Antarctica, maar door een nog onbekende reden is de groep verdwenen. Wetenschappers schuiven de schuld voorlopig in de schoenen van klimaatverandering, waardoor het ijs voor de kust van Antarctica smelt.

Toch is dit nog niet bewezen….. Er is immers  meer nodig dan de natte vinger in de lucht steken.

De kleine kolonie bestond uit 150 paren keizerspinguïns. De groep werd voor het eerst ontdekt in 1948. Tot de jaren zeventig van de vorige eeuw bleef het ledenaantal stabiel. In 1978 begon een sterke daling van het aantal pinguïns, dat decennialang voortzette.

In 2009 besloten wetenschappers het eiland per vliegtuig te verkennen. Helaas vonden zij geen enkele keizerspinguïn.

De kans bestaat dat de pinguïns zijn verhuisd.

Een andere mogelijkheid is dat alle leden van de groep zijn omgekomen.

Keizerspinguïns keren ieder jaar terug naar de plek waar ze zijn geboren. Aangezien pinguïns ongeveer twintig jaar oud worden, is het heel goed mogelijk dat alle leden ondertussen niet meer in leven zijn.

Zeeijs
Ijs is heel belangrijk voor keizerspinguïns, omdat zij op snelgroeiend zeeijs (oftewel ijs dat in de winter groeit en in de zomer smelt) paren en eieren broeden.

Uit gegevens van een weerstation blijkt dat het zeeijs tussen 1979 en 2004 54 dagen later groeit en dat het zeeijs 31 dagen eerder smelt. Deze trend geldt overigens niet voor alle wateren in Antarctica, maar alleen voor het gebied waar de kleine kolonie keizerspinguïns leefde.

Minder eten, meer vijanden
Maar er is meer: wellicht dat de stijging van globale temperaturen ervoor zorgt dat er minder vis, krill en inktvissen te eten zijn. Of misschien zorgt de klimaatverandering ervoor dat pinguïns meer vijanden hebben, zoals zeeluipaarden en stormvogels.

Andere kolonies
Wetenschappers kunnen erachter komen wat er is gebeurd door andere kolonies nauwlettend in de gaten te houden.

Bronmateriaal:
The Lost Emperor: A Colony of Penguins Disappears” – LiveScience.com

—> Het was een kolonie van 150 paren dus een kleine ramp die een zesde van dit aantal uitroeit kan een reden zijn voor de rest van de vogels om zich elders bij een andere kolonie aan te sluiten.

In iedere groep dieren zijn er altijd wel een aantal die bepalen waar de gehele groep naartoe gaat. Dus als de leiders van deze kolonie door locale zeeluipaarden worden opgegeten dan komen er nieuwe leiders die mogelijk een nieuwe plek zoeken voor de kolonie.

—> bovendien  ;  in  een gedecimeerde kolonie verhoogd de inteelt  —>constante inteelt leid naar de ondergang van een locale  populatie ….

Twee nieuwe koloniën keizerpinguïns ontdekt op Antarctica

 12 november 20122

Franse wetenschappers hebben twee nieuwe koloniën keizerpinguïns ontdekt op de Zuidpool. De koloniën tellen zo’n 6000 jonge pinguïns en daarmee zijn er ongeveer drie keer meer pinguïnparen op de Zuidpool dan wetenschappers altijd dachten.

De onderzoekers vonden de pinguïns op ijs rond de Mertz-gletsjer. Het idee dat zich hier onbekende groepen pinguïns zouden ophouden, ontstond al in 1999. Toen zagen onderzoekers duizenden keizerpinguïns naar en uit het gebied komen. In 2009 bevestigden waarnemingen vanuit de ruimte de vermoedens toen sporen van de pinguïns in het gebied werden aangetroffen. Maar in 2010 brak er een groot stuk van de gletsjer af en moesten de pinguïns wel verhuizen. En dus waren de onderzoekers weer terug bij af. Na dertien jaar onderzoek hadden ze de pinguïns nog steeds niet in het echt gezien en nu gingen de pinguïns weer verkassen.

Gevonden!
Franse wetenschappers lieten het er echter niet bij zitten en trokken er met een schip en helikopter op uit. Met succes! Ze hebben de pinguïns nu gevonden. Ze ontdekten dat de pinguïns zich op zeeijs nabij de Mertz-gletsjer opnieuw proberen te settelen.

Twee groepen
De groep heeft zich nadat de gletsjer een flink stuk ijs is verloren, in tweeën gesplitst. De onderzoekers troffen één kolonie met 2000 jongen aan. En vijftien kilometer verderop vonden ze een kolonie met 4000 jonge pinguïns.

Keizerpinguïns brengen elk jaar één jong groot. Dat er nu twee kolonieën met in totaal 6000 jongen zijn gevonden, is goed nieuws. Het betekent dat op de Zuidpool zo’n 8500 paartjes leven: ongeveer drie keer meer dan wetenschappers altijd dachten.

Bronmateriaal:
Two new emperor penguin colonies in Antarctica” – Institut-polaire.fr
De foto bovenaan dit artikel is gemaakt door Giuseppe Zibordi / Michael Van Woert, NOAA NESDIS, ORA (via Wikimedia Commons).

Groep pinguïns is gebaat bij egoïstisch gedrag van haar leden

Geschreven op 19 november 2012 om 15:45 uur door 2

In een poging warm te blijven, schuiven pinguïns dicht tegen elkaar aan. Daarbij gedragen ze zich heel egoïstisch, maar een nieuw wiskundig model laat zien dat dat egoïstische gedrag verrassend genoeg positief uitpakt voor de groep. Door het egoïstische gedrag wordt de warmte eerlijk over alle pinguïns verdeeld.

Wiskundige Francois Blanchette lijkt niet de aangewezen persoon om pinguïns te bestuderen. Toch lieten de organismen hem niet meer los nadat hij ze in ‘The March of the Penguins‘ had gezien. Hij zag hoe de pinguïns, getergd door flinke kou, hun lijfjes tegen andere pinguïns aandrukten.

Model
Blanchette was nieuwsgierig naar de wiskunde in zo’n groep. Hoe werd de hitte in de groep verdeeld? En welke invloed had de vorm van de groep op die verdeling van de hitte? Samen met zijn collega’s maakte Blanchette een model waarin pinguïns zo dicht op elkaar stonden dat alleen de pinguïns aan de randen van de groep konden bewegen. Elke pinguïn genereerde warmte, die vervolgens door de wind werd weggenomen. De onderzoekers berekenden welke pinguïns aan de buitenste randen van de groep het koudst waren. Ze keken daarvoor naar verschillende factoren, zoals het aantal pinguïns in de groep en de kracht van de wind. Vervolgens lieten ze die pinguïns naar het midden van de groep bewegen (waar het warmer was). Dat resulteerde uiteindelijk in langgerekte groepen pinguïns. In werkelijkheid zijn groepen pinguïns ronder, en dus pasten de onderzoekers hun model aan.

Egoïsme
Zo bleven ze aan hun model sleutelen, totdat het overeenkwam met de werkelijkheid, zo meldt het blad PLoS ONE. Tot hun grote verbazing wees het model erop dat pinguïns hun hitte heel eerlijk delen. Ondanks het feit dat een pinguïn zich maar met één doel tegen andere pinguïns aandrukt: zijn eigen warmteverlies zo klein mogelijk maken. Dat is heel egoïstisch. Maar dat egoïstische gedrag doet de groep goed. “Ook al zijn pinguïns egoïstisch en proberen ze enkel de beste plek voor zichzelf te vinden en denken ze niet aan de groep, dan nog brengt elke pinguïn even veel tijd in de koude wind door,” vertelt Blanchette. “Een groep pinguïns is een zelfvoorzienend systeem waarin de dieren op elkaar vertrouwen voor beschutting en ik denk dat dat het tot een eerlijk systeem maakt.” Blanchette verwacht echter dat er maar weinig voor nodig is om dit eerlijke systeem aan te tasten. “Als je een soort obstakel hebt, zoals een muur, dan denk ik dat het al snel niet meer zo eerlijk zou zijn.”

De onderzoekers hopen dat biologen iets met het wiskundige model kunnen. Maar ze hopen ook dat hun studie een andere prettige bijwerking heeft. “Bijna iedereen lijkt van pinguïns te houden en te weinig mensen houden van wiskunde. Als we wiskunde gebruiken om pinguïns te bestuderen, kunnen we mogelijk meer mensen leren om van wiskunde te houden.”

Bronmateriaal:
New Model Reveals How Huddling Penguins Share Heat Fairly” – American Physical Society’s Division of Fluid Dynamics (via Sciencedaily.com).
De foto bovenaan dit artikel is gemaakt door Glenn Grant / National Science Foundation (viaWikimedia Commons).

Keizerspinguïn heeft ijs nodig om uit te rusten

 23 november 2012 3

Wetenschappers hebben ontdekt dat de aanwezigheid van zee-ijs heel belangrijk is voor keizerspinguïns. In het seizoen waarin ze hun jongen grootbrengen en op zee zoeken naar voedsel gebruiken ze het ijs om tussen het harde werken door, ook om  uit te rusten.

Dat schrijven onderzoekers in het blad PLoS ONE. Ze voorzagen een aantal pinguïns van een zendertje en konden ze zo op de voet volgen.

Rust
Uit het onderzoek bleek dat de keizerspinguïns een groot deel van hun tijd in het water doorbrengen. Slechts dertig procent van hun tijd brengen ze op het zee-ijs door. Eenmaal op het ijs gearriveerd, leggen ze daar geen grote afstanden af. In plaats daarvan rusten ze uit.

De hele dag door
Dat rusten is heel belangrijk. Door zo af en toe korte perioden van rust in te lassen kunnen keizerspinguïns handig gebruik maken van het feit dat de zon 24 uur per dag schijnt: ze kunnen de hele dag door zoeken naar voedsel.

Roofdieren
De onderzoekers ontdekten ook dat pinguïns zodra ze bij zee aankomen om te gaan jagen, eerst een tijdje op de rand van het zee-ijs staan. Soms wel 38 uur. Pas daarna maken ze hun eerste duik.

“We vermoeden dat het rusten op het ijs en het lange wachten op de rand van het ijs te maken heeft met de aanwezigheid van roofdieren,” zo schrijven de onderzoekers.

Waarschijnlijk wachten de pinguïns op het randje van het ijs tot meer pinguïns zich daar verzameld hebben, zodat ze samen kunnen duiken en hun kansen om door een roofdier (zeeluipaarden bijvoorbeeld) gepakt te worden, te verkleinen.

De onderzoekers benadrukken in hun studie dat klimaatverandering leidt tot het korter worden van gletsjers, het ineenstorten van grote ijsschotsen en uiteindelijk een afname van de hoeveelheid zee-ijs. Het onderzoek suggereert dat de keizerspinguïn daar op lange termijn last van kan gaan krijgen

Bronmateriaal:
Activity Time Budget during Foraging Trips of Emperor Penguins” – Plosone.org
Emperor penguins use sea ice to rest between long foraging periods” – Plosone.org
De foto bovenaan dit artikel is gemaakt door Sandwich (cc via Flickr.com).

Smeltend zee-ijs bedreigt de keizerspinguïn

 21 juni 2012  0

Hij ziet eruit alsof niemand hem iets maken kan: de flinke keizerspinguïn. Maar schijn bedriegt.

Sterker nog: de keizerspinguïn dreigt door het smeltende zee-ijs helemaal te verdwijnen.

Wetenschappers van het Woods Hole Oceanographic Institution (WHOI) trekken die conclusie na een uitgebreid onderzoek. “Als je wilt bestuderen welke effecten het klimaat op een bepaalde soort heeft dan zijn er drie puzzelstukjes die je bij elkaar moet leggen,” vertelt onderzoeker Hal Caswell.

“De eerste is een beschrijving van de gehele levenscyclus van het organisme en hoe individuen zich door die levenscyclus bewegen.

Het tweede stukje is hoe de cyclus beïnvloed wordt door klimaatvariabelen.

En het cruciale derde puzzelstukje is een voorspelling van hoe die variabelen er in de toekomst uit kunnen gaan zien.

Klimaatmodel
Voor hun studie gebruikten de wetenschappers klimaatmodellen. Die werden zorgvuldig geselecteerd. Er werd gekeken welke modellen een goed beeld gaven van de daadwerkelijke hoeveelheid zee-ijs in de 20e eeuw.

“Als een model een uitkomst voorspelde die goed overeenkwam met de werkelijkheid dan was het ons inziens waarschijnlijk dat ook de projecties van de hoeveelheid zee-ijs in de toekomst betrouwbaar waren,”

stelt onderzoeker Julienne Stroeve. Met behulp van deze klimaatmodellen werd vastgesteld hoe de temperatuur en hoeveelheid zee-ijs zou veranderen.

Vervolgens werd gekeken hoe deze veranderingen de keizerspinguïns op Adélieland, een gebied in het oosten van Antarctica, beïnvloeden.

Resultaten
Als we op deze voet doorgaan en ook in de komende jaren net zoveel CO2 uit blijven stoten, dan stijgen de temperaturen en neemt het zee-ijs af.

Dat resulteert tot 2040 in een voortdurende lichte daling van het aantal keizerspinguïns.

Na 2040 nemen hun aantallen opeens een stuk rapper af.

Zijn er nu nog ongeveer 3000 broedende paartjes( op Adélieland ) : tegen het jaar 2100 zijn dat er waarschijnlijk nog maar vijf- tot zeshonderd.

IJs
Hoe zorgen die hoge temperaturen er nu precies voor dat deze pinguïns het moeilijk hebben?

Pinguïns eten vissen, pijlinktvissen en garnaalachtige diertjes. De prooi van pinguïns eet weer plankton: kleine organismen die aan de onderkant van het ijs groeien. Als het ijs verdwijnt, verdwijnt het plankton en de prooi van pinguïns krijgt het zo ook moeilijk.

Er ontstaat eigenlijk een sneeuwbaleffect. En dat effect beperkt zich niet tot pinguïns.

Ook wij mensen kunnen er nog wel eens hinder van ondervinden.

“Wij vertrouwen op het functioneren van deze ecosystemen,” stelt Caswell. “We eten vis die van Antarctica komt. We vertrouwen op een cyclus van voedingsstoffen waar soorten in alle oceanen waar ook ter wereld bij betrokken zijn.”

En dat maakt het onderzoek ook zo belangrijk.

Bronmateriaal:
Melting Sea Ice Threatens Emperor Penguins, Study Finds” – WHOI.edu
De foto bovenaan dit artikel is gemaakt door Stephanie Jenouvrier / Woods Hole Oceanographic Institution.

Pinguïn blijkt soms een ijskoud jasje aan te trekken

 06 maart 2013 0

keizerspinguin

Wetenschappers hebben ontdekt dat keizerspinguïns er soms voor zorgen dat het oppervlak van hun verenpak kouder is dan de omringende lucht. Het klinkt niet heel verstandig, maar dat is het wel: het helpt de pinguïns om op temperatuur te blijven.

Onderzoekers bestudeerden keizerspinguïns op Antarctica. Deze pinguïns hebben het niet gemakkelijk. De temperaturen kunnen er ‘s winters dalen tot -40 graden Celsius. Bovendien staat er een genadeloos harde wind, waardoor de gevoelstemperatuur nog lager ligt. Gelukkig zijn pinguïns daarop voorbereid. Hun lichaam beschikt over tal van eigenschappen die de pinguïns in staat stellen om ondanks de snijdende kou toch op temperatuur te blijven. Eén zo’n eigenschap is het verenpak van de pinguïn: het is lekker dik, isoleert goed en is winddicht.

Kou
Maar de pinguïn kent nog wel meer trucjes om warm te blijven, zo blijkt uit een nieuw onderzoek. Wetenschappers richtten een warmtecamera op de dieren om te achterhalen hoe hun temperatuur zich tot de temperatuur van de omringende lucht verhoudt. Ze ontdekten iets bijzonders. Een groot deel van het oppervlak van het lichaam van de pinguïn (met uitzondering van de snavel en de ogen) bleek kouder te zijn dan de omringende lucht.

 

Warmte winnen
Dat klinkt niet echt logisch: hoe kan de pinguïn nu op temperatuur blijven als de bovenste laag van zijn verenpak al kouder is dan de omgeving? Toch zijn de pinguïns erbij gebaat, zo schrijven de onderzoekers in het blad Biology Letters.

“Onder deze omstandigheden zal het verenpak paradoxaal genoeg warmte winnen door convectie van de omringende lucht.”

Hoe werkt dat precies?

Wanneer wij op een koude winterdag naar buiten stappen, verliezen we warmte. Ons lichaam is immers warmer dan de omringende lucht. In het geval van de pinguïn kan het verlies van warmte al snel fataal zijn: de dieren moeten het lange tijd – zonder eten – zien vol te houden en kunnen zich het verlies van warmte niet veroorloven. Het verenpak helpt daarbij. Het oppervlak ervan is kouder dan de omringende lucht. De iets warmere lucht komt met deze laag in contact en geeft warmte aan de pinguïns af, in plaats van dat de pinguïns warmte aan de koude lucht verliezen.

Het is twijfelachtig of de pinguïns het daar echt warmer door krijgen. Hun veren geleiden warmte slecht, waardoor waarschijnlijk een heel klein deel van de warmte die het buitenste laagje van het verenpak verzamelt maar bij de huid van de pinguïn terecht komt. Maar goed: alle beetjes helpen.

Bovendien voorkomt het natuurlijk wel dat de pinguïn heel veel lichaamswarmte verliest.

Bronmateriaal:
Emperor penguin body surfaces cool below air temperature” – Royalsocietypublishing.org
De foto bovenaan dit artikel is gemaakt door NSF / Josh Landis.

 

Keizerspinguïns op Antarctica lijken zich aan hogere temperaturen aan te passen

 09 januari 2014 40

keizerspinguin

Satellietbeelden suggereren dat keizerspinguïns zich aan het veranderende klimaat aanpassen. Ze verlaten hun traditionele broedplaats – zee-ijs – wanneer deze later dan normaal ontstaat en broeden dan op de veel dikkere ijsplaten.

Keizerspinguïns broeden normaal gesproken op zee-ijs. Een ideale plek. Ze zijn dan namelijk altijd dicht bij het water: hun bron van voedsel. Satellietbeelden laten zien dat pinguïns in de jaren 2008, 2009 en 2010 ook inderdaad op dat zee-ijs broedden. Maar in 2011 en 2012 verplaatsten ze zich naar een nabijgelegen ijsplaat, omdat het zee-ijs zich in die jaren pas een maand nadat het broedseizoen begon, vormde.

ZEE-IJS VERSUS IJSPLAAT

Zee-ijs bestaat uit bevroren zout water. IJsplaten bestaan uit glaciaal ijs dat van het land afkomstig is en in zee is beland.

Dat de pinguïns het zee-ijs schijnbaar moeiteloos inruilen voor een ijsplaat is ronduit opmerkelijk. Het valt namelijk nog niet mee om op zo’n ijsplaat te klimmen: de randen kunnen wel dertig meter hoog zijn.

“Hoewel de pinguïns uitstekende zwemmers zijn, worden ze op het land vaak als klunzig gezien,” merkt onderzoeker Peter Fretwell op. Desalniettemin gaat de klim ze blijkbaar goed af.

Eerder stelden onderzoekers nog vast dat het er niet best uitzag voor de keizerspinguïn, omdat deze zo afhankelijk is van zee-ijs. Maar dit onderzoek suggereert dat de pinguïns in staat zijn om zich aan te passen.

“Deze nieuwe resultaten kunnen ons helpen begrijpen wat de toekomst voor deze dieren in het verschiet heeft,” stelt onderzoeker Barbara Wienecke. Tegelijkertijd waarschuwt ze dat we er niet automatisch vanuit moeten gaan dat alle pinguïnkoloniën zich op deze manier aanpassen.

“Dat deze vier koloniën in staat zijn om zich te verplaatsen naar een andere omgeving – van zee-ijs naar ijsplaat – om met lokale omstandigheden om te kunnen gaan, hadden we totaal niet verwacht. We moeten nog ontdekken of ook andere soorten zich aan de veranderende omstandigheden aanpassen.”

Bronmateriaal:
Antarctic emperor penguins may be adapting to warmer temperatures” – Antarctica.ac.uk
De foto bovenaan dit artikel is gemaakt door lin padgham (cc via Flickr.com).

http://dier-en-natuur.infonu.nl/vogels/2568-pinguin-niet-vliegende-vogel.html

—>  Uiteraard moeten Pinguins  zich aan het klimaat aanpassen omdat hun leefomgeving verandert. De klimaat verandering is bepalend voor hun leefomgeving en die klimaatverandering is overal anders. Maar de gemiddelden, die vaak gegeven worden, zeggen weinig over locale situaties.

Het feit dat de mensen het broeikas effect versterken en  dat  het klimaat opwarmt is een  vastgesteld  fenomeen

“Anthropogenic global warming wordt veroorzaakt door het verhoogd broeikaseffect door menselijk handelen. Daar bestaat naar het schijnt 96% consensus over .  Die overige 4% zijn klimaatnegationisten die betaald worden door de ontkenningsindustrie.

De modellen zijn steeds accurater en duiden inderdaad op de factor van broeikasgassen  Antropogene invloeden zijn er meerdere dan alleen co2. Massale onbossingen zijn bvb ook een antropogene invloed, menselijke verwoestijning ook.

° —-> De aangroei van zeeijs is later begonnen( maar voor dat onderzoek jaar sterker in aangroei.)
Doordat deze dus later begon heeft de penguin zijn broedplaats verlegt, ondanks dat het zeeijs op andere pkaatsen een maximum heeft bereikt wil dat niet zeggen dat dat homogeen verspreid is over de gehele kustlijn, ook weer misvattingen die voortkomen door overmatig te focussen op gemiddelden.

Men weet dat er in het verleden variaties waren en dus eeuwen waarop er een pak minder en een pak meer zeeijs geweest moet zijn. Maar dan ….  mag je niet zomaar aannemen dat die punguins  toen ook al dan niet verhuisden   aangezien je geen tijdmachine hebt  om ze dat gedaan te zien hebben.

Nu hebben we dat dus wel geobserveerd bij vier koloniën wier broedplaats nog niet  gereed was toen men deze ging opzoeken. Zelf in het artikel vermeld men dat dit niet bij alle koloniën dus gebeurd moet zijn.

—>Het betwijfelbaar  of je dit een evolutionaire aanpassing kunt noemen. Er komen immers(nog) , geen fysieke veranderingen aan te pas.

–> Ik zou het ook geen evolutionaire aanpassing noemen. Ik denk niet dat er een genetische basis is voor deze verandering in gedrag.   De verandering in  gedrag is  hier waarschijnlijk niet genetisch—->  wat ik bedoel is  dat er geen mutatie heeft plaatsgevonden waardoor de pinguins zich plots anders gingen gedragen.

°De Pinguins   zoeken nu broedplaatsen op die overeenkomen met hun natuurlijke habitat. Dat doen ijsberen ook die zich steeds noordelijker ophouden.

Als die pinguïns noodgedwongen op steeds-   hoger gelegen gebieden moeten kruipen dan past de soort zich na x aantal generaties aan.   Maar  als   het ijs drastisch snel verdwijnt zullen ze waarschijnlijk  deze snelle verandering niet aan kunnen   en  toch   gaan  echt uitsterven? 

Als het ijs echter verdwenen is, is het echter ook met de ijsberen en de pinguïns gedaan.                                     

Overigens valt deze  wedren  en  habitataanpassing bij meerdere soorten waar te nemen.

http://phys.org/news/2014-01-climate-animals.html

 

LINKS 

http://penguinology.blogspot.be/2009_06_01_archive.html

 

°

Keizerspinguïn wil best zo af en toe wel verhuizen

 

Welke invloed heeft klimaatverandering op de keizerspinguïn? Onderzoekers zien het iets zonniger in nu blijkt dat keizerspinguïns minder honkvast zijn dan gedacht en best wel willen verhuizen als dat moet.

Onderzoekers dachten lang altijd dat keizerspinguïns elk jaar naar exact dezelfde plek togen om te broeden. Maar een nieuw onderzoek laat zien dat dat niet klopt. Onderzoekers ontdekten dat verschillende pinguïns niet naar hun vertrouwde broedplek trokken. Blijkbaar zijn de pinguïns veel sterker dan men dacht bereid om te verhuizen.

Nieuwe kolonie
De onderzoekers onderschrijven die conclusie met de recente ontdekking van een geheel nieuwe pinguïnkolonie op het Antarctisch Schiereiland. “Als we aannemen dat deze vogels elk jaar naar dezelfde locaties trekken, dan zouden nieuwe koloniën die we op satellietbeelden zien, nergens op slaan. Deze vogels verschijnen niet vanuit het niets: ze moeten ergens ander vandaan zijn gekomen. Dit suggereert dat keizerspinguïns zich tussen koloniën verplaatsen.”

March of the Penguins
“Het betekent ook dat we de manier waarop we veranderingen binnen populaties interpreteren, opnieuw onder de loep moeten nemen.” Een mooi voorbeeld daarvan is een pinguïnkolonie die onderzoekers al meer dan zestig jaar bestuderen en die een hoofdrol speelt in de bekende film ‘March of the Penguins‘. Aan het eind van de jaren zeventig nam het aantal pinguïns in deze kolonie in vijf jaar tijd met de helft af. Men dacht dat de hogere temperaturen – de Zuidelijke Oceaan warmde in diezelfde tijd op – daarvoor verantwoordelijk waren: meer pinguïns dan normaal zouden het loodje hebben gelegd. De onderzoekers gingen er namelijk vanuit dat deze kolonie heel geïsoleerd lag en dat de pinguïns nergens anders naartoe konden gaan. Maar satellietbeelden tonen aan dat nabij deze kolonie verscheidene andere koloniën te vinden zijn. “Het is mogelijk dat de vogels de kolonie verlaten hebben en naar een andere kolonie zijn gegaan.”

De ontdekking dat keizerspinguïns niet zo honkvast zijn als gedacht, is hoopgevend. Wellicht zijn de vogels dus flexibeler en kunnen ze ook beter omgaan met (door klimaatverandering ingegeven) veranderingen in hun leefgebied.

 

 

Twee nieuwe koloniën keizerpinguïns ontdekt op Antarctica

Bronmateriaal:
New research using satellite images reveals that emperor penguins are more willing to relocate than previously thought” – UMN.edu
De foto bovenaan dit artikel is gemaakt door lin padgham (via Wikimedia Commons).

°

Adélie Pinguin

 

 

°

WIST U DAT…

… in de prehistorie pinguïns van wel 1,27 meter hoog leefden?

* weggestopte studie naar ‘perverse adeliede  pinguïns hier                                                            … een lange relatie niet is weggelegd voor homoseksuele pinguïns?

… pinguïns regelmatig de ‘wave’ doen?
… winnende dwergpinguïns een triomftocht maken?

OCTOPUSSY

°

BIODIVERSITEIT  

MOLLUSCA  

WEEKDIEREN  

°

Trefwoorden

CEPHALOPODA   

°

27-03-2009

Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.<– oorspronkelijk  uit bloggen be  octopussy  =  (OCTOPUSSEN  EVOLUTIE  -)

1.- VONDSTEN   IN  LIBANON 

Keuppia levante sp. nov. from the Upper Cenomanian (Metoicoceras geslinianum Zone) of Hâdjoula (Lebanon).
Middle Cretaceous in Lebanon,

The holotype specimen Keuppia levante (Image credit: Dirk Fuchs, )
http://www.examiner.com/x-1242-Science-News-Examiner~y2009m3d17-Against-the-odds-ancient-octopus-fossils-discovered
another  Source here

Keuppia levante is een van de  drie (1) zopas  in  libanon  ontdekte  -95a-100 MY oude ,  fossiele  octopus soorten
(Octopoda (=Incirrata)http://nl.wikipedia.org/wiki/Achtarm  )uit het krijt

—>  Octopus fossielen zijn  zeldzaam  en  ongebruikelijk :  
Ze  bezitten geen  inwendig skelet (2)   en  daardoor zullen  na hun dood  de  weke delen  binnen enkele weken compleet verschrompeld zijn.Dit exemplaar is  echter  uitzonderlijk  compleet :   zelfs de inktzak en zuignappen zijn nog  te onderscheiden

Bovendien  ging  vroeger  niemand   gericht   op zoek naar een fossiele octopussen  , om die bovenvermelde  redenen
Toch waren  en zijn er  reeds   fossiele octopussen  bekend

O.m. uit diezelfde site  Middle Cretaceous in Lebanon ____   een zogenaamde Lagerstaete  wat staat voor een bepaalde type  formatie die exceptionele bewaring  van  (ook zachte  )weefsels mogelijk maakt  _____,werd al 100 jaar geleden een  andere  fossiele  octopus  , de  Palaeoctopus  gerecupereerd

Cretaceous Octopus Fossil

Woodward’s 1896 specimen / Old Covent, Sahel-el-Alma, Mount Lebanon( British Museum of Natural History in London)
Order Cirroctopoda(?) familie ,  Paleoctopodidae
Palaeoctopus is preserved as a film, or tissue impression, in sandstone. It is a short squat eight-armed octopus with an indistinct head.
Much as with Pohlsepia and Proteroctopus, Palaeoctopus has a pair of triangular fins on either side of its head though these are smaller than Proteroctopus.( zie appendix )
A faint trace of a web uniting the arms is visible and the presence of suckers on the arms has been identified.

Palaeoctopus newboldi

°

Er  zijn daar bovenop  genoeg  andere   fossiele COLEOIDEA  (–>  inktvisachtigen  mét  inwendige schelp )gevonden
–>-Tegenwoordig worden fossielen zeer gericht gezocht.
De kennis van de tijdschaal van de evolutie en van de geologische vorming van de aardlagen is zo ver gevorderd  dat paleontologen gericht  op locaties kunnen zoeken naar tussenvormen om hun hypotheses te testen. 
In hoeverre dit   fossiel (mogelijks)  gericht is gezocht  , weet ik (nog ) niet
Maar de
 keuze van de  site is zeker niet toevallig  (zie hierboven )

_

De ontdekker van de huidige libanese  fossielen  ,    Dirk Fuchs van de Universiteit van Berlijn.,  zei
Deze dingen zijn 95 miljoen jaar oud, maar één van de fossielen is nauwelijks van levende soorten te onderscheiden,”

Dat is een “onvoorzichtige” uitspraak die natuurlijk  door allerlei creationisten zal worden  ge-quoted
( Nu door  bijvoorbeeld ..de( Belgische YEC-er ) Oneof   ,naprater  van    de (Nederlandse  fundamentalisten van   ) Schepper en zoon  (3)

Creationisten  zijn er natuurlijk,  ook zonder die quote,   al  als de kippen bij__ zoals een korte  lezing van lezersbrieven en reacties op blogs laat zien  ____ om te  verklaren dat  ;

” Vreemd  ,dat  octopussen  er na al die miljoenen jaren nog hetzelfde uitzien. “(3**)
en ook Harun Yayah  volgelingen zullen het gegeven beslist  gaan gebruiken 


°


Maar creationisten   vergeten een bepaald  gedeelte   van de anatomie dat  kompleet anders  is dan van  de huidige  octopussen  :
Er  is zelfs  geen enkele andere  huidige koppotige( cephalopoda )  die   een  zelfde   GLADIUS  bezit   als dit fossiel . 
°

Deze  fossiele en  de huidige octopussen  gelijken  alleen oppervlakkig  op elkaar .
Het kompleetste  fossiel  bezit een  herkenbaar  vestigale  schelp  de gladius

http://scienceblogs.com/pharyngula/2009/03/18/octopods-from-the-cretaceous/

De gedetailleerde  schets (rechts ) met de  vestigale gladius  van het holotype, MSNM i26320a 


holotype, MSNM i26320a

(Click for larger image)
Keuppia levante sp. nov. from the Upper Cenomanian (Metoicoceras geslinianum Zone) of Hâdjoula (Lebanon). A,
holotype, MSNM i26320a. B, sketch of the holotype

PZ MEYERS  :
” ….there is a shell gland a chitinous chunk of vestigial shell called the gladius…”

Gladius/Zwaard. 
Hoornige, veervormige schelp van inktvissen. 
Komt overeen met de opperhuid van een schelp.
 http://www.soortenbank.nl/soorten.php?so

(PZ MEYERS )
Octopods also have something similar, but in modern forms it is reduced to a delicate little rod-like bar, nothing more.

Note that in Keuppia above, the gladius is relatively robust — it looks like a pair of clamshells imbedded in the head. Next, here’s another of the specimens found in this locality, Styletoctopus annae.
Look at the gladius here. “

i-4c45d63a0a312e034a823a85d9e7fe0a-styletoctopus.jpeg

Styletoctopus annae sp. nov. from the Upper Cenomanian (Metoicoceras geslinianum Zone) of Hâqel (Lebanon). 
A, specimen MSNM i26323. B, close-up of A showing the imprints of the stylets situated in the lateral mantle sac.

–> Deze ontdekking  is eveneens  biezonder omdat   het hier  gaat   om de   zoveelste (zogenaamde  )” transitionnal  “(4)
*het fossiel bevat een mix  van kenmerken  (= een mozaïk )
*K.Levante   bezit  een tweedelige  robustere  versie  van een vestigale  gladius , ( in elk geval  robuuster  dan de rudimentaire gladius-resten van de   huidige   leden  van de  moderne Familie Octopodidae

(nota ) Er wordt soms een andere classering gebruikt  waarbij  de hier  in dit  artikel en figuur  gebruikte 
(Engelse )Octopoda —>  =  ( ned ) Onderorde Incirrina (octopoda)     ,   (Engelse )   Ciroctopoda  —-> =  (ned) OnderordeCirrina  )

” ….If you put these data together with other observations of even older cephalopods, including more squid-like forms, you get a picture of an evolving morphology from an ancestral unpaired shell to a divided form to spread-apart lateralized stylets to the modern, even more reduced form…..”
i-84a4f08733ca149207ee361c9b486c52-oct_phylo.jpeg

(Click for larger image)

http://geology.about.com/b/2009/03/18/fossil-octopus-really.htm
http://www.sciencedaily.com/releases/2009/03/090317111902.htm
http://scienceblogs.com/pharyngula/2009/03/octopods_from_the_cretaceous.php
http://www.msnbc.msn.com/id/29757659

abstract 
NEW OCTOPODS (CEPHALOPODA: COLEOIDEA) FROM THE LATE CRETACEOUS (UPPER CENOMANIAN) OF HÂKEL AND HÂDJOULA, LEBANON
Authors: FUCHS, DIRK1; BRACCHI, GIACOMO2; WEIS, ROBERT3
http://www.ingentaconnect.com/content/bpl/pala/2009/00000052/00000001/art00005
Evolutie van giften
http://scienceblogs.com/pharyngula/2009/04/cephalopod_venoms.php

____________________________________________________________________________________________________________________________________

NOTEN EN COMMENTAREN

(1)
Keuppia levante gen. nov., sp. nov.,
Keuppia hyperbolaris gen. nov,. sp. nov.
Styletoctopus annae gen.

(2)
De    COLEOIDEA   bezitten echter  wel een   inwendige ( meestal  brose ) schelp =de  meeste  fossiele cephalopoden   werden voornamelijk  (en worden nog )  door paleontologen gedetermineerd  aan de  hand van de (uitwendige ) ” schelp“(bv.ammonieten )
en de inwendige schelp ( bv.Belemnieten )
Bij octopussen ( die tot de  Coleoidea  behoren  )  is dat een klein beetje  anders

http://www.geologie.ac.at/filestore/download/BR0046_045_A.pdf
(waaruit )
“…..Their (= the octopoda) evolution can be demonstrated by allometric growth and reduction of the middle field of the gladius.  ”
Toch zijn  fossielen van  weke delen  van organismen ___en van erg vluchtige  voorvallen ____ bewaard  gebleven  ….
er  zijn  bijvoorbeeld  “fossiele”  regendruppel-inslagen en voetafdrukken  in  vulkanische  as bewaard gebleven ; om nog maar te zwijgen van  allerlei  sporen  van dino’s
Er zijn ook  kwallen en” weke “skeletloze  overblijfselen  van andere  precambrische organismen bekend  –> bijvoorbeeld   Dicksonia

(3) Bijvoorbeeld de Nederlandse  YEC creationist  ;  Schepper & zoon heeft het  ook  over
Van ‘primitieve’ octopussen werd verondersteld dat ze vlezige vinnen aan hun lijf hadden, maar daarvan werd niets gezien bij deze fossielen, hoewel ze uitzonderlijk goed bewaard zijn gebleven.”
maar dat is mogelijk  een afleidings-manoeuvre (of een niet terzake doende  opmerking   , die alleen maar  een of andere    veronderstelde  (hypotghetische) “primitieve “octopus-voorouder   verder  weg  doet plaatsen  in de tijd  …)
Waar het om gaat is  de  vestigale  GLADIUS ( in vergelijking met de  rudimentaire  gladius-resten   van tegenwoordige octopus-soorten ) ,maar  daarover zwijgt men  …..

(3**)
Hier vind je enkele  antwoorden aan   (amerikaanse ) creationisten
http://scienceblogs.com/pharyngula/2009/03/in_which_i_am_woefully_accurat.php
http://scienceblogs.com/pharyngula/2009/03/even_dumber_than_denyse_oleary.php
Omdat nederlandstalige   creationisten veelal   clonen zijn van “amerikaanse”voorbeelden  , is het verantwoord te verwijzen naar  de
antwoorden  van de  amerikaanse “debunkers ” :  je zit dan meteen aan de bron  van die “eindeloze discussies ” …

( vertaalde  samenvatting uit bovenstaande  blogposts  )
a-
“…….Creationisten  beweren  dat   deze  nieuwe   vondsten  een  “voorbeeld zijn van  stasis ”  ( bijvoorbeeld hier –>  false conclusion that this is an example of stasis  )….
Maar  dat is niet zo  : deze fossielen zijn duidelijk verschillend van moderne vormen

  ( amerikaanse )Creationisten  beweren  verder , op grond van die valse conclusie ,   dat ;
De
 octopus (vulgaris?  ) “helemaal niet evolueerde  “

Noteer echter dat het bezit van  acht  tentakels   ,  een zeer algemeen kenmerk is van  de  octopodiformes   ….
De evolutionaire   veranderingen  die worden  beschreven kan je niet zomaar   verwerpen  omdat
je meent   dat  ”  alles met acht “armen “bezaaid  met herkenbare zuignappen   , wel hetzelfde soort  schepsel moet zijn  ”
Er zijn meer dan 200 verschillende  species opgenomen   in de familie Octopodidae, en er staan  meer dan  100  specima  te wachten op verdere  beschrijvingen en classificatie in die  familie   ___er zijn ongetwijfeld nog meer octopodidae  die op ontdekking wachten .
De octopodidae  zijn  van een  ongelofelijk diversiteit ( en dat alleen al wijst op een zeer  hoge ouderdom van hun  gemeenschappelijke  voorouder  met andere  octopusachtigen ( waarvan velen ook acht  “armen “bezitten  )

Deze blinde beunharen  en  morosofe  kwaks ( of misschien wel  regelrechte leugenaars ?) doen eigenlijk  steeds hetzelfde  .
Zo zouden  ze  ___ eenzelfde redeneertrant volgend ____ook  gemakkelijk  de paleontologen erop kunnen wijzen  dat  ;
Er   GEEN  evolutie heeft plaatsgevonden  , omdat  365 miljoen oude  tetrapoda …… net als  alle hedendaagse   zoogdieren  nog  steeds  vier  ledematen bezitten …..”

(Mijn commentaar )
In feite is  het hier aangevoerde  creationistische ” bezwaar ” de aloude mantra  :
” Hoe  gegeven  organismen  ( zoals hier  , de octopussen )   ook mogen varieeren
ze blijven  octopussen   ( = een bijbelse “geschapen  “soort   of  “baramin ( baranoom  )”
waarbij  micro-evolutie  wordt aanvaard  en macroevolutie  ontkent
(micro en macro evolutie uiteraard in de creationistische terminologie  / betekenissen  )

(anderen )
* Veel  volwassenen kennen  nauwelijks   het verschil  tussen  een  spin, een insect en  zelfs kleine schaaldiertjes  (= pissebedden ) ;
Ze  vatten dat alles  gemakshalve samen als  het   te verdelgen    “klein kruipend   (on)gedierte ”  :  de  “beestjes ”
Deze creationistische  artikels tonen  nogmaals aan dat  hun doelgroep  diegenen   zijn  met het grootst mogelijk  onbegrip  over de natuur  ___
en die er het meest  over willen  vertellen  . Ze  vinden  dat zij  serieus  moeten  worden  genomen   als  plaatselijke  “autoriteiten” ter zake  …
zelfs als ze worden herkend als  ignoramus
Iets waarop  creato’s  inspelen  opdat ze hun meningen  ( met een grote portie  populair appeal ) als  “wetenschappelijk valabele  en verantwoorde   kritiek  ”
verder kunnen slijten

*” ….De 95 miljoen-jaar-oude octopus evolueerde  uiteindelijk niet  als  puntje bij paaltje komt ” ( Denise O’Leary  )
Echter  deze gevonden  octopus is een  basale vorm  uit de  orde  der  octopoda ____net zoiets  als… de   afstand maki-Mens .
Iemand moet een  classificatie-cursus   volgen

.*…de morfologische  verschillen tussen de  voorbeelden  uit het krijt    en   de  moderne octopodae zijn op zijn  minst even  divers  als die tussen  chimpansees en mensen.
Indien er slechts  micro evolutie en variatie is  opgetreden in het  inkvis -baramin ….wat is dan  de reden  om  de mens NIET te zien als een variatie  van de chimp ? (of omgekeerd )

*Zelfs als de fossiele octopus morfologisch  identiek  moest  zijn   ( wat hij  niet IS )  aan eigentijdse , zou dat nog  niets zeggen  over  de genetische drift , welke zich niet noodzakelijk  dient te manifesteren in de  restanten van de  fysieke verschijning

b.-

(creato )
1  “Wetenschappers  zijn in verwarring   gebracht door de vondst  van  het recentste fossiel ”
2″ Het is een octopus die zij  op 95 miljoen  jaar oud hebben geschat  ”
3 “en,weet je  wat?
Het  ziet eruit als een moderne  hedendaagse  modern  octopus –  kompleet  met acht armen , met rijen zuignappen   en zelfs sporen van inkt. ”
4 “Het lijkt erop  dat in al die tijd  de octopus niet  is  geëvolueerd  – niet eens  één uiterst klein beetje.
 ”

(PZ)
1.- Wetenschappers  zijn helemaal   niet  door deze ontdekking in de war  gebracht.
2.-  Oppervlakkig gezien is dit juist
Alhoewel  – ze ” schatten”  het niet (zonder onderbouwing )  op – 95 miljoen jaar .
De creationist  probeert de indruk te wekken dat het hier omeen blote gissing  (= slechts een “‘claim”)gaat …
Het is een conclusie die door het geologische  bewijsmateriaal wordt gesteund.
De vondst is gedaan in een geologische formatie die minstens al honderd jaar bekend is  en  telkens weer  is gedateerd en gekontroleerd
3 .-Er zijn honderden octopus-soorten
De hierboven vermelde  beschrijving van de “octopus ”  is van kleuter niveau  ,een vierjarige die  met een kleurpotlood iets krabbelt
De fossielen  (er waren verscheidene geïdentificeerden species) lijken NIET  op  moderne octopods, maar hebben verscheidene veelbetekenende verschillen.
4 .-Compleet  vals.
De creationist heeft het wetenschappelijke   paper ( en uiteraard de argumenten ) niet gelezen  dat deze fossielen in de  lange geschiedenis van evolutieve veranderingen
en  vertakkingen binnen het   geslacht (plausibel )  inpast.

Ik kom toch nog eventjes terug op die  Schepper&zoon -figuur
die schrijft  o.a.   in het kader  van  een   soort  persoonlijk  kommentaar  op een  creationistisch  bewerkt  artikel over deze vondsten ;
Een evolutionaire voorloper van deze beesten kan niet worden getoond en in 95 miljoen jaar zou er niets aan ze veranderd zijn,
terwijl in diezelfde tijd dino’s in vogels veranderden.
Hier is iets niet in de haak als je het mij vraagt.”

1.- de evolutionaire voorloper  van “deze beesten”   is nog niet met zekerheid bekend …..heilaas zal  ook deze voorloper  niet worden  herkend  daar geen enkele van  al “deze beesten ” een   identiteitskaart op zak  heeft  of een  trouwboek  bezit
..Een beschrijving  , robotfoto’s    van   een mogelijke  kandidaat  binnen een  bekende  fossiele   groep waaruit ” deze  ( nu gevonden  fossiele)beesten ”   kunnen zijn voort gekomen , is echter  wél voorhanden
2.-” er zou niets veranderd zijn “=  is een  tendentieuze  sxuggestie die   een  ordinaire  ,   verdraaiende  leugen  tracht te  verbergen    – De huidige  verwanten /  collaterale  afstammelingen  van die  beesten  zijn dus wél veranderd  …  de gevonden  fossielen en  de hedendaagse octopussen  zijn  morfologisch  /anatomisch  wel  degelijk andere beesten
, terzelfdertijd vertonen ze ook veel  gelijkenissen  ….nogal duidelijk  toch ?
Lees   trouwens  de” paper ” , zodat je er iets meer  van afweet  dan de schijver van die creato- kwakkels en suggestieve truuks   …
3.-  Vogels  ZIJN  de   huidige  nog levende  dino’s….Niemand weet  op welk moment  of tijdstip  (een ) afstammingslijn( en ) uit  een bepaalde dino -groep  is afgetakt  die dieren heeft opgeleverd die men  “vogels” kan noemen ….Die creato  weet dat  blijkbaar wél ?
alhoewel  hij niet in evolutie “gelooft “( evolutiekunde   is trouwnes  geen geloof maar  een  interdiciplinaire wetenschap !!!   )
Er is echter  wel degelijk  genoeg  fossiel ( en  ander  vergelijkend ) materiaal  om de link   theropoda -moderne vogels , te kunnen maken  en te  ondersteunen …
4.- Wat hier ” niet in de haak”is ?   De  moedwillige onkunde   en  de mogelijke  leugenachtigheid  van deze creationist ….is voor iedereen duidelijk

(4)
Eigenlijk  is elk  fossiel (en  extant organisme )een ” transitionnal “ …
*
De term ( in het biezonder   het creationistische weggevertje  ” missing link “  )
heeft   bar  weinig  te  maken met  de wetenschap  zelf  maar  alles met  opherklopte en   sensationele persberichten  erover

——————————————————————————————————————————————————————————————————–

andere  CEPHALOPODA  

APPENDIX
(OPGEPAST  !!! de  volgende   artikels   zijn  wel   iets   verouderd  sinds deze nieuwe  vondsten  )

(Victor Strijdbos ) 

Evolutie van de Cephalopoda.
De oudste Cephalopoda zijn vermoedelijk ontstaan uit de monoplacophora, de oermollusken. Het lichaam verlengde zich in dorsoventrale richting en de voet verplaatste zich naar de kopstreek.

mollusca-phylog



Mogelijke evolutie series binnen de  mollusca 

evolutie mollusca(naar Salvini-PLawen )

crown group  and ancestors

crown group and ancestors 

°De mogelijke evolutie van de oermollusk  naar de Cephalopoda.

De voet ontwikkelde zich tot een nieuw bewegingsysteem, er vormden zich tentakels en 2 over elkaar liggende lappen, die samen een trechter vormen. Het dier bezit tentakels welke aan zijn kop bevestigd zijn, vandaar koppotigen. Uit deze traag voortbewegende vorm van Cephalopoda hebben zich weer actievere soortgenoten ontwikkeld. Een aantal tentakels reduceerde naar stevige armen en de trechterlappen vergroeiden met elkaar. De ingewandenzak werd nog langer, de mantel overgroeide de schelp die geleidelijk kleiner werd. Er zijn ook Cephalopoda met een inwendige schelp, zoals o.a. bij de belemnieten.

De uitwendige schelp, een ronde- of ellipsvormige conische rechte of opgerolde buis, is verdeeld in kamers. Een goed voorbeeld vanrecente Cephalopoda met een uitwendige schelp is de nautilus

Een ammonoida

ceratites

CERATITES 

nautilus 2

Nautilus

en met een inwendige schelp de sepia.

sepia zeekat
De uitwendige schelp van de Ammonoidea en Nautiloidea, werd omgevormd tot een hydrostatisch orgaan.
Bij Cephalopoda met een inwendige schelp verloor de schelp de drijffunctie.
De schelp werd achteraan verzwaard door materiaalafzetting, hierdoor krijgt men een betere gewichtsverdeling.
Het dier werd duidelijk mobieler en kon zich ook sneller horizontaal bewegen.

°
De evolutie ging nog verder,
nog meer actieve Cephalopoda reduceerden de schelp tot een dunne hoornpen zoals bij de pijlinktvissen.
Snel zwemmende Cephalopoda verloren hun schelp volledig, zoals bijvoorbeeld bij de Octopoda

Indeling van de Cephalopoda

De klasse Cephalopoda wordt onderverdeeld in 3 ordes: Ammonoidea, Nautiloidea en Coleoidea.
Ammonoidea hebben een uitwendige schaal, meestal planispiraal. De sutuurlijn is meestal complex en er is een eenvoudig siphokanaal aan de buitenrand van de venter.
Nautiloidea bezitten ook een uitwendige schaal, de sutuurlijn is eenvoudig en er zijn complexe siphonale trechters. Het siphokanaal ligt in het midden van de septa.


mollusca-nested-hierarchy

Bestand:Cuttlebone.jpg
Coleoidea
hebben een inwendige schaal, ( het zogenaamde “zeeschuim” ) zoals bij sepia.
de  sepia is trouwens  ook  een  achtarmige inktvis

Als fossiele Coleoidea denken wij aan de belemnieten.

Nautiloidea en Coleoidea zijn recent nog vertegenwoordigd.


OVERZICHT  OCTOPUS EVOLUTIE

http://www.tonmo.com/science/fossils/fossiloctopuses.php

 tree-of-life-mollusca
Phyllum MOLLUSCADE CLASSIFICATIE  VAN DE CEPHALOPODA  IS NOG STEEDS NIET  AFGEWERKTBOVENDIEN WORDEN OUDE EN NIEUWE  CLASSIFICATIE- SCHEMA’S ( EN VOLGENS DE  VERSCHILLENDE  TAALGEBIEDEN  ) NOG STEEDS  DOOR ELKAAR GEBRUIKT ( ook in de wetenschappelijke  publicaties  !!!  )…..1.- Encyclopedia of Life
http://www.eol.org/pages/2312Molluscs +

http://www.tonmo.com/science/public/vampyroteuthis.php

 

Darwin’s Paradox of ecosyteem met sponzen

sponzen

°

°

ecosystemen.docx (2.5 MB)

http://www.ecomare.nl/ecomare-encyclopedie/natuurlijk-milieu/ecologie/ecosystemen/

Ecosystemen

Een ecosysteem is het geheel van planten, dieren en het gebied waar ze in leven, bijvoorbeeld de wadplaten, prielen en geulen van de Waddenzee. De Noordzee en de Waddenzee zijn twee heel verschillende ecosystemen. Het kustlandschap, stranden en duinen samen, is één ander ecosysteem.

°

De spons: het antwoord op de 171 jaar oude Darwins Paradox!

°

http://www.nu.nl/wetenschap/3595230/koraalriffen-bestaan-dankzij-sponzenpoep.html

7 oktober 2013

…..Sponzen zetten de afvalstoffen van koralen en algen om in voedzame poep waarmee andere bewoners van een koraalrif zich in leven kunnen houden.De vraag hoe koraalriffen in voedselarme wateren kunnen groeien, is daarmee opgelost.

wetenschappelijk tijdschrift Science.

“Tot nu toe werd er maar weinig aandacht besteed aan sponzen”, verklaart hoofdonderzoeker Jasper de Goeij op BBC News.

“Maar nu blijkt dat sponzen grote spelers zijn in een koraalrif: ze verdienen de credits voor die rol.”

°

07 oktober 2013  1

rif

Koraalriffen zijn oasen in een grote oceaan, die verder grotendeels leeg is. Hoe is het mogelijk dat er op het koraalrif zoveel organismen leven, terwijl een paar meter verderop de oceaan wel een woestijn lijkt? Darwin vroeg zich dit 171 jaar geleden ook al af. Later werd dit raadsel ‘Darwins Paradox’ genoemd. Wetenschappers uit Nederland hebben nu het antwoord gevonden!

°

Tropische zeeën zijn over het algemeen voedselarm.

Hoe kan het dat er zoveel organismen op een koraalrif kunnen leven, terwijl er zo weinig voedsel beschikbaar is? Het antwoord is: sponzenpoep!

Sponzen kunnen het water heel goed filteren, waarbij ze bacteriën, eencellige algen en zelfs virussen eten. Het grootste deel van hun dieet bestaat echter uit organische stoffen, zoals suikers die zijn opgelost in het zeewater. Deze opgeloste organische stoffen zijn de belangrijkste bron van voedsel op de koraalriffen: ze worden geproduceerd door de koralen en algen op het rif. Deze voedselbron is echter niet beschikbaar voor de meeste andere bewoners van het koraalrif en dreigt daarom weg te lekken naar de omliggende tropische zee-woestijn.

Spons
Jasper de Goeij van de Universiteit van Amsterdam en Dick van Oevelen van het Koninklijk Nederlands Instituut voor Onderzoek der Zee hebben samen met een aantal collega’s onderzoek gedaan aan het koraalrif bij Curaçao.

Daar ontdekten ze dat de binnenkant van het koraalrif – een soort grotten – bedekt is met een dun laagje spons.

Omdat deze binnenkant van de koraalgrotten heel sterk geplooid is, is het toch een groot oppervlak. Al deze sponzen bij elkaar blijken in staat om de opgeloste suikers uit het zeewater te filteren.

Ondanks al dit voedsel, groeiden de sponzen niet.

Wat gebeurde er dan wel?

Close-up van de spons Halisarca caerulea met uitstroomopening voor het gefilterde water (stervormig). De sponzenpoep (detritus) is zichtbaar als lichtbruine vlokjes op het oppervlak van de spons. © Jasper de Goeij.

Close-up van de spons Halisarca caerulea met uitstroomopening voor het gefilterde water (stervormig). De sponzenpoep (detritus) is zichtbaar als lichtbruine vlokjes op het oppervlak van de spons. © Jasper de Goeij.

Sponzenpoep
Het bleek dat de sponzen enorm veel nieuwe cellen produceerden.

Maar als ze niet groeien, waar bleven die cellen dan? Uiteindelijk bleek dat ze hun cellen heel snel vernieuwen en de oude cellen als dood organisch materiaal uitpoepten. En die sponzenpoep, dat is een lekker maaltje voor krabbetjes, wormen en slakjes. En die worden op hun beurt weer gegeten door grotere dieren, zoals vissen. De Goeij en collega’s toonden hierdoor aan dat sponzen een tot nu toe onbekende en onmisbare schakel zijn in de voedselkringloop van koraalriffen.

Onopvallend
Hoe kan het dat dat niet veel eerder ontdekt is? De sponzen leven vooral aan de binnenkant van het rif, en vallen dus niet op als u langs het rif zwemt. Bovendien poepen de sponzen ook nog eens vooral ‘s nachts. En wie gaat er nu midden in de nacht in het pikkedonker aan de binnenkant van een koraalrif kijken?!

De Goeij en Van Oevelen wijzen op de belangrijke rol van sponzen in toekomstig onderzoek en in de bescherming van koraalriffen. Deze rol is tot nu onderbelicht gebleven terwijl het voortbestaan van de koraalriffen wereldwijd ernstig wordt bedreigd. Het sponzenonderzoek maakt niet alleen duidelijker hoe het koraalrif werkt, maar ook hoe het ecosysteem productief kan zijn zonder dat er energie verloren gaat. Dit is belangrijk voor de ontwikkeling van duurzame vormen van aquacultuur en het opzetten van zeeboerderijen.

°

auteur  : Nienke Bloksma is wetenschapsvoorlichter bij het Koninklijk Nederlands Instituut voor Onderzoek der Zee op Texel. Sinds haar jeugd heeft ze een passie voor de natuur en het milieu, met een speciale voorkeur voor het Waddengebied en de zeeën. Na een studie Biologie en Geografie heeft ze voor de milieucommunicatie gekozen.

Science-publicatie_ Spons poept leven in tropisch koraalrif – Universiteit van Amsterdam <—PDF 

Video  

De sleutel voor echt duurzame visteelt ligt in de koraalriffen. In deze superefficiënte ecosystemen wordt al het afval gerecycled en gaat geen greintje energie verloren.

http://www.uitzendinggemist.nl/afleveringen/1300799

LINKS 

KOUDWATERKORAAL   —>‘dodemansduim’

http://natuurbericht.nl/?id=6198

Enige Nederlandse koraal in Zeeuwse Delta nagenoeg uitgestorven

Bericht uitgegeven door Stichting ANEMOON op zondag 26 juni 2011

Dodemansduim is de illustere naam van het enige in de Nederlandse kustwateren voorkomende koraal. Voor de geheel of gedeeltelijke afsluiting van het Veerse meer, Grevelingenmeer en de Oosterschelde kwam dit zachte koraal nog veelvuldig in de Zeeuwse Delta voor. Na de afronding van de Deltawerken is de soort hier heel snel achteruit gegaan. In de afgelopen jaren werd het steeds minder vaak aangetroffen. Momenteel lijkt Dodemansduim in deze wateren uitgestorven te zijn. Gelukkig komt dit zachte koraal tenminste nog veel voor op de wrakken en lokaal ook op de Klaverbank in de Noordzee. Het is een bijzondere soort die mogelijk als indicator soort kan fungeren voor te beschermen gebieden en habitats in de Noordzee. Iets waar nu nog een groot gebrek aan is.

Dat Dodemansduim een koraalsoort (Klasse Octocorallia) is blijkt uit de acht tentakels van de poliepen. De vlezige lobben en de afwezigheid van een kalkskelet geven vervolgens aan dat het een zogenaamd zacht koraal is (orde Alcyonacea). De Latijnse naam Alcyonium digitatum is afgeleid van het feit dat de lobben tweevoudig vertakt zijn. De kolonies kunnen circa twintig centimeter groot worden. De kleur van de kolonies is wit of geeloranje. Langs de Nederlandse kust kwam het vroeger op veel plaatsen voor: van enkele meters tot meer dan veertig meter diep.

Dodemansduim op Klaverbank 2011 (foto: Peter H. van Bragt)

Dodemansduim op Klaverbank 2011 (foto: Peter H. van Bragt)

De Doggersbank expeditie van 2011 heeft op de meeste wrakken die zij hebben bekeken het Dodemansduim aangetroffen. Vaak betrof het grote, mooie volgroeide kolonies. Ook op een tweetal bekeken plaatsen op de Klaverbank, ten noordoosten van Den Helder, werden veel maar vaak kleinere kolonies aangetroffen. Hier komt het enige Nederlandse koraal dus nog veelvuldig voor.

Voor de afsluiting van de het Veersemeer, Grevelingenmeer en de gedeeltelijke afsluiting van de Oosterschelde kwam het Dodemansduim ook hier op heel veel plaatsen voor. Oudere sportduikers die hier voor de Deltawerken hebben gedoken kunnen dit bevestigen. Het getijdenverschil was toen gemiddeld circa een meter groter dan het nu is. In het Veerse meer en Grevelingenmeer bestaan nu in het geheel geen getijdenstromingen meer. De waterkwaliteit en zuurstof concentraties zijn hier na de afsluiting sterk achteruit gegaan. In deze wateren hebben de veranderde factoren er toe bijgedragen dat het Dodemansduim hier nu is uitgestorven. Ook in de Oosterschelde is door de aanleg van de Oosterscheldekering de stroomsnelheid aanzienlijk afgenomen. En hoewel in de centrale en westelijke Oosterschelde nog een redelijke getijdenstroming bestaat is de afname van de stroomsnelheid ook hier een belangrijke factor geweest in de teloorgang van het koraal in deze zeearm.

Dodemansduimpje Oosterschelde mei 2011 (foto: Floor Driessen)
Dodemansduimpje Oosterschelde mei 2011 (foto: Floor Driessen)

De laatste jaren heeft er tijdelijk nog een kleine populatie Dodemansduim in het zuidwestelijke Grevelingenmeer gestaan. Die is er nu weer verdwenen. Ook zijn er recent slechts zelden en uitsluitend hele kleine kolonies Dodemansduim op enkele plaatsen van de Oosterschelde aangetroffen. Die hebben zich echter nooit kunnen vestigen of voor een nieuwe populatie kunnen zorgen. Daarom moeten we nu helaas vaststellen dat het enige Nederlandse koraal in deze zeearmen nagenoeg uitgestorven is.

Dodemansduim is door menselijk ingrijpen uit een groot deel van de Zeeuwse Delta verdwenen. We weten dat het lokaal op de wrakken en tenminste ook op de Klaverbank in de Noordzee nog veelvuldig voorkomt. Dat is een van de vele goede redenen om snel over te gaan op de bescherming van deze gebieden. We wachten nog steeds op de Nederlandse overheid om adequate maatregelen te nemen om zowel onze enige koraalsoort als de rest van de bijzondere mariene biodiversiteit die hier voorkomt te beschermen voor het te laat is!

Tekst: Peter H. van Bragt, Stichting Anemoon
Foto’s: Peter H. van Bragt en Floor Driessen

Sponsdieren /Sponzen  soorten

Sponzen

Dieren 

http://www.soortenbank.nl/hoofdgroepen.php?groep=Sponzen&selectie=65&hoofdgroepen_pad=%2C1%2C65

sponzen

Boorspons   Broodspons  Gele korstspons  Geweispons   Gewone zakspons  Grillige buisjesspons   Paarse buisjesspons                        Sliertige broodspons  Hymeniacidon perlevis   Mycale micracanthoxea

http://oud.digischool.nl/bi/onderwaterbiologie/html/biologie/sponzen.htm

Van alle dieren die zijn opgebouwd uit structuren van meerdere cellen is de spons wel de meest eenvoudigste. Bij een spons ontbreekt het aan gespecialiseerde organen als hart, maag, en darmen. Ook zijn er geen kringloopsysteem of zenuwbanen aanwezig; ze zijn niets meer dan één groot filtersysteem en dat filtersysteem is enorm efficiënt.
Door microscopisch kleine openingen (ostiën) in het sponsoppervlak stroomt het water naar binnen. De ostien zijn verbonden met kanaaltjes die door het lichaam van de spons lopen. In die kanaaltjes zitten speciale cellen die, met hun trilharen, een stroming op gang brengen, zodat er binnen het lichaam van de spons een soort vacuüm ontstaat. Op die manier is de spons in staat om elke minuut meer dan vier keer zijn eigen volume aan water door zijn lichaam heen te pompen en zodoende van microscopisch kleine organismes te zuiveren. Het gezuiverde water verlaat het lichaam weer via een veel grotere uitstroomopening (oscula).

Van de ongeveer 10.000 bekende soorten zijn er slechts enkele die in zoetwater leven. Het overgrote deel leeft in zee, van de pool tot de tropen en van ondiepe poeltjes tot de diepe oceaan troggen.

Door zijn eenvoudige bouw bezit de spons een groot regeneratievermogen. Als hij, door welke reden dan ook, in verschillende stukjes zal worden verdeeld, kan elk gedeelte weer uitgroeien tot een zelfstandige spons.

Sponzen kunnen uitgroeien tot hoge bekervormige of geweiachtige structuren. De stevigheid die daarvoor nodig is ontlenen ze aan de aanwezigheid van glas, hoorn of kalkachtige naaldjes of skeletelementen (spicula), die samen met het sponsweefsel voor een stevige structuur zorgen. Deze skeletelementen zijn er ook verantwoordelijk voor dat de spons, voor de meeste dieren, oneetbaar is.

Boorspons
Geweispons
Gewone broodspons
Oranje korstspons
Paarsebuisjesspons
Sliertige broodspons
Bleke badspons
WittebuisjessponsZaksponshttp://www.anemoon.org/search?SearchableText=zakspons
Zeeland
Zoetwaterspons zoet water
Buisspons
Bekerspons
tropen

http://users.skynet.be/sky68333/biologie/dierenrijk/k_sponzen.htm

Stam 1 Sponzen (porifera)

Sponsen zijn voornamelijk in zee levende, vastzittende dieren met een regelmatige vorm (sommige soorten zijn echter wel veranderlijk van vorm). Slechts enkele soorten komen voor in zoet water. Sponsen bezitten geen mond, geen spijsverteringsstelsel en hebben geen waarneembaar zenuwstelsel. Een spons bestaat meestal uit een verzameling cellen, die niet samen geordend zijn tot organen of weefsels. Ze omvatten een systeem van kamers en kanalen, die door middel van poriën met de buitenwereld in verbinding staan.De cellen liggen meestal in een geleiachtige massa, die wordt ondersteund door een skelet, bestaande uit kalk- of kiezelnaalden (= spicula). Deze spicula kunnen tot een fijn traliewerk samengevlochten zijn. Diverse soorten bezitten dit skelet niet maar verkrijgen hun stevigheid door een fijnmazig netwerk van sponginevezels. (Spongine is een chemische stof die nauw verwant is aan zijde.) De grondvorm van een spons is in het eenvoudigste’ geval een zak die aan de buitenkant bedekt is met afgeplatte cellen, de dekcellen, die aaneensluiten. De inwendige holte is bekleed met kraagcellen, die voorzien zijn van een zweephaar. Door het slaan met deze zweepharen bewerkstelligen de kraagcellen een waterstroom die binnenkomt langs de poriën, naar de centrale holte wordt gevoerd en door de uitstroomopening weer naar buiten vloeit. De kraagcellen houden de voedseldeeltjes vast en verteren ze of geven ze door aan andere cellen, die voor de vertering zorgen. De waterstroom kan worden vertraagd of versneld door samentrekken of uitstulpen van de poriën. Het voedsel bestaat hoofdzakelijk uit plankton en organisch afval (detritus).

Indeling:

De indeling van de sponsen gebeurt aan de hand van de bouw van de skeletnaalden. We onderscheiden 4 klassen :

  • Kalksponsen of Calcarea waarvan het skelet bestaat uit kalknaalden (Plaat 8, fig. 1 en 2)
  • Glassponsen of Hexactinellida waarvan het skelet bestaat uit kiezelnaalden. Bijna alle glassponsen zijn diepzeebewoners. (Plaat 8, fig. 3 en 4)
  • Hoornsponsen of Demospongia waarvan het skelet spongine bevat. De meest bekende sponsen behoren tot deze klasse (Plaat 9).
  • Koraalsponsen of sclerospongia waarvan het skelet opgebouwd is uit kiezelnaalden en spongine (Plaat 9, fig. 7).

Kenmerken:

Eenvoudige bouw, uitstroomopeningen zichtbaar, zacht en plooibaar

vormen:

  • korstsponzen: bedekken het substraat met een dunne korst
  • geweisponzen: hebben de typische gewei-vorm
  • bekersponzen & buissponzen: zoals de geweispons maar holle ‘buizen’ of zelfs ‘bekers’ als de binnendiameter groter is dan de lengte van de spons
  • massieve sponzen: bolvormig, zoals de badspons

  

types:

  • Ascon type: kleine sponzen; de zweephaarcellen zitten in de centrale holte
  • Sycon type: grotere sponzen; de zweephaarcellen zitten in de vetakkingen van de centrale holte
  • Leucon type: grote sponzen; zeer sterk vertakt, de zweephaarcellen zitten in kleine kamertjes 

Bouw:

bouw spons1

  1. Hol lichaam, voorzien van microscopische instroomopeningen en zichtbare uitstroomopeningen.
  2. Binnenkant bekleed met kraagcellen (cellen, voorzien van een zweephaar) of choanocysten die de waterstroom door de spons veroorzaken. De kraagcellen kunnen voedsel vangen.
  3. Naargelang de plaats waar de kraagcellen zich bevinden onderscheiden we het Ascon-, Sycon– en Leucon type.
  4. Skelet van naalden (spicula) van kalk, kiezelzuur of hoorn dat stevigheid geeft aan de spons. Naargelang de naalden worden de sponzen ingedeeld in kalk, glas en hoornsponzen. De naalden bevinden zich in de gelei-achtige massa tussen de buitenste en binnenste cellaag.
  5. Weinig verschillende soorten cellen:
  • dekcellen (pinacocyten) a.d. buitenkant. Het zijn de levende tegels van de spons.
  • mesenchymcellen (amoeboïdale cellen die voedsel transporteren tussen kraagcellen en dekcellen. zoals het bloed bij de mens). Ze kunnen uitgroeien tot eicellen, zaadcellen of cellen die skeletnaalden produceren (spiculablasten).
  • sluitcellen (porocyten) zijn doorboorde dekcellen die de instroomopeningen vormen. Ze kunnen de waterstroom door de spons regelen door zich min of meer samen te trekken.
  • drie spiculablasten die een skeletnaald (spicula) vormen.
  • contractiele cellen rondom een porie kunnen samentrekken om de waterstroom te verminderen en om de spons lichtjes van vorm te veranderen. Door het ontbreken van een zenuwstelsel zal deze contractie niet gecoördineerd verlopen.
  • kraagcel (choanocyt). Ze verzorgen de waterstroom door de spons met hun zweephaar en nemen voedseldeeltjes op. De kraag zorgt ervoor dat de deeltjes niet wegdrijven als ze de cel naderen.
  • Naargelang de vorm herkennen we de Bekersponzen, Geweisponzen en Korstsponzen

tek_spons_versch_cellen

Voeding:

De spons is een aktieve filteraar; aktief omdat ze een inspanning doet om de waterstroom te bekomen (pomp) en filteraar omdat ze het zwevende microscopische plankton uit het water filtert d.m.v. kraagcellen. Deze kraagcellen nemen ook zuurstof op uit het water. Dit microscopische plankton bestaat voornamelijk uit diatomeeën; ééncellige wiertjes. De instroom openingen zijn zeer klein om te voorkomen dat de spons zou verstoppen. Toch kan de spons niet voorkomen dat er binnenin algen samenklitten tot een vlies dat de voedselvoorzienng in gevaar brengt. Daarom zien we soms slangsterren in de spons om ze te reinigen.

Voortplanting:

1) Geslachtelijk

Sommige mesenchymcellen slaan reserve voedsel op en groeien uit tot eicellen; andere mesencymcellen vormen spermatozoïden. Sommige sponzen zijn tweeslachtig (Hermafrodiet). De spermatozoïden worden in de waterstroom gebracht en kunnen dan bij een vrouwelijke spons terecht komen. De bevruchtte eicellen ontwikkelen zich tot larven met zweepharen. Na enige tijd verlaten ze de moederspons en zwemmen rond om een vasthechtingsplaats te zoeken. Eens vastgehecht keren de zweepharen naar binnen en groeit de larve uit tot een nieuwe spons.

2) Ongeslachtelijk

  • Knopvorming: De spons vormt knoppen die kunnen uitgroeien tot sponsjes op de moederspons of die kunnen afbreken en vormen een nieuwe spons.
  • Uitbreiding: Sommige sponzen bedekken rotsen en worden steeds groter; ze breiden zich horizontaal uit (zoals de kolonievormende neteldieren). Andere bestaan uit draden. Als ze een draad laten vallen, breekt die af en zal een nieuwe spons vormen.

  

  • Gemmula: Verschillende sponzen vormen bolletjes van met voedsel gevulde cellen, omgeven door een met sponsnaalden beschermende laag. Deze gemmulae kunnen tegen uitdroging en bevriezing en geven de spons extra overlevingskansen. Onder gunstige omstandigheden barst de gemmula open en verenigen de uitgestoten cellen zich tot een nieuwe spons.
  • Regeneratie: Regeneratie is vrij algemeen bij de lagere dieren en duidt op de mogelijkheid om waar lichaamsdelen afgerukt werden, er terug een nieuw aangroeit. Bij de spons is het regeneratievermogen enorm. Een spons die door een zeef gedrukt wordt in duizenden stukjes vormt eerst een vlokkige wolk in het water. Na een tijdje zal deze wolk zich organiseren een nieuwe spons vormen. Elk stukje bezit zelfs de mogelijkheid om een nieuw spons te vormen.

Relaties met andere dieren:

Vijanden:

Sponzen staan voornamelijk op het menu van de sommige naaktslakken (géén vlokkige). Elke naaktslak heeft haar specifieke spons op het menu staan vb dalmatieërslak eet steenspons, doris eet badspons,…

De grootste vijand van de spons is het zand (verstopt de poriën) en de algen ( groeien op de spons indien er veel zonlicht bij kan en verstoppen dus ook de poriën).

Symbiose:

Sponzen leven dikwijls in symbiose met de worm eupolymnia die de filterverstoppingen van de spons wegpeuzelt. kleine slangsterretjes of galathea kreeftjes die de algenbegroeiing in de spons of de verstoppende eetbare deeltjes wegnemen. Deze bewoners komen ’s nachts uit hun spons om een frisse neus te halen

Andere relaties:

In vele bekersponzen verstoppen zich kleine visjes(5), garnalen(3) of slangsterren(4). De spons is een groot filter dat kan verstoppen door grote organische deeltjes. Deze deeltjes dienen als voedsel voor de symbiotische partner. Op deze manier blijft het sponsfilter zuiver en blijft de spons in leven.

Het tweekleppige weekdier Ark van Noach(1) bedekt zich steeds met de rode korstspons als camouflage.

Op sommige sponzen groeien korstanemonen(2)

Philippe Mertens ***I Yellow Diving School

http://nl.wikipedia.org/wiki/Sponsdieren

Sponsdieren (Porifera; een samentrekking van de Latijnse woorden porus, porie, en ferre, dragen) vormen een stam van het dierenrijk. Het zijn sessiele, primitieve meercellige dieren die in het water leven en zich vastzetten op de bodem. De meeste leven in zeeën en oceanen, tot op 8,5 kilometer diepte, maar er zijn ook zoetwatersponzen. Ze vangen hun voedsel door water te filtreren. Er is wel sprake van enige differentiatie in de cellen, maar niet van aparte organen, spieren of zenuwen.

Anno 2013 zijn ruim 8400 soorten bekend,[2][3] en regelmatig worden nieuwe soorten beschreven.

°

DIEPZEE

KORAAL  EN WORM  : een BASALE  SYMBIOSE  binnen   een  DIEPZEE  ECOSYSTEEM  van   KOUDWATER-KORAALRIFFEN    ? 

Liefde tussen koraal en worm

Bericht uitgegeven op maandag 18 maart 2013

De relatie tussen een koudwaterkoraal en een worm is voor beide partners voordelig, concludeert Christina Mueller van het Koninklijk Nederlands Instituut voor Onderzoek der Zee (NIOZ) in haar artikel in het tijdschrift PLOS ONE van 11 maart. De worm kan zijn voedselopname vergroten door van zijn gastheer het koraal te stelen, het koraal versnelt de opbouw van zijn skelet zonder dat hem dat significant meer kost.

Koudwaterkoraal Lophelia pertusa (foto: NOAA)
Koudwaterkoraal Lophelia pertusa (foto: NOAA)
°

Koudwaterkoralen leven in koudere oceanen, tussen de 40 en meer dan 2000 meter diepte. 

De beter bekende tropische koralen leven in warm en ondiep water.
Koudwaterkoralen zijn vrij onbekend, maar hun riffen zijn ‘hotspots’ van biodiversiteit in de diepzee.
Koudwaterkoralen zoals Lophelia pertusa vormen uitgestrekte riffen op de bodem van de diepzee.
De worm Eunice norvegica leeft samen met dit koraal, maar tot voor kort was het onduidelijk waar deze samenwerking uit bestond. Mueller en haar collega’s ontdekten dat de worm meer voedsel kan opnemen door dit te stelen van zijn gastheer het koraal. Het koraal lijdt hier echter niet onder, omdat het kan omschakelen naar een ander soort voedsel. Als de worm van het koraal steelt, gaat het koraal kleinere voedseldeeltjes eten, die voor de worm minder interessant zijn. Daarnaast versnelt het koraal de opbouw van zijn skelet (calcificatie) onder invloed van de worm. Verrassend genoeg veroorzaakt dit geen significante verhoging van zijn stofwisseling. De relatie tussen koraal en worm is daarom voor beide voordelig.Experimenten in het aquarium
Wormen en koralen werden samen of alleen in aquaria geplaatst en gevoerd met verschillende soorten voedsel. Mueller en haar collega’s merkten het voedsel met een chemische ‘marker’. Hierdoor konden ze zien hoeveel voedsel werd gebruikt voor groei en hoeveel voor de stofwisseling van beide dieren. Ze keken ook of er een verschil was als de dieren alleen of samen werden gehouden. Bij het koraal bepaalden ze ook hoeveel van het voedsel werd gebruikt om het kalkskelet op te bouwen, met en zonder de aanwezigheid van wormen.Invloed van klimaatverandering
Om het koraalrif te begrijpen is het dus belangrijk om ook naar de interacties tussen organismen te kijken. Een rif is niet een louter koraalrif, maar het wordt ook gekenmerkt door de interacties tussen verschillende organismen die het rif zo rijk maken en zijn functie bepalen. De aanwezigheid van de worm stimuleert de groei van het rif en kan zo de ontwikkeling en het behoud van dit bijzondere ecosysteem bevorderen. De interacties tussen deze soorten zijn dus heel belangrijk voor de toekomst van de koudwaterkoraalriffen, gezien de veranderende omstandigheden. Dit unieke ecosysteem wordt al bedreigd door de klimaatverandering, waardoor het zeewater opwarmt en verzuurt.Dit onderzoek maakte deel uit van het promotieonderzoek CALMARO, dat mede gefinancierd werd door het Europese Zevende Kaderprogramma. De experimenten werden uitgevoerd bij het Sven Lovén Centre for Marine Sciences-Tjärnö, van de universiteit van Gothenburg in Zweden, in de zomer van 2010.Meer informatie
Lees meer in het Engelstalige wetenschappelijke artikel ‘The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation’, Christina E. Mueller, Tomas Lundalv, Jack J. Middelburg and Dick van Oevelen, PLOS ONE March 11, 2013.                       —–   journal.pone.0058660[1]koudwaterkoraal <—PDF Bron: Persbericht NIOZ <—  wtd026042.pdf big picture  <—-pdf 
Foto: National Oceanic and Atmospheric Administration (NOAA)

Vleesetende spons in de vorm van een harp ontdekt

 07 november 2012  1

Wetenschappers hebben voor de kust van Californië, op een diepte van zo’n 3500 meter een wel heel bijzondere en nieuwe soort spons ontdekt. De spons lijkt op een harp, maar is een stuk dodelijker. De spons is namelijk een efficiënte vleeseter.

De spons bestaat uit verschillende horizontale takken die bijna op de grond leunen. Op die takken bevinden zich vele verticale takjes. En daarmee doet de vorm van de spons – die de naam Chondrocladia lyra heeft gekregen – denken aan een harp.

Jagen
Maar de functie van de lange takken van de spons is heel anders. Hij gebruikt ze om te jagen. De spons beschikt over kleine wortels waarmee hij zich redelijk stevig in de modderige ondergrond gevestigd heeft. Waterstromen hebben dan ook geen invloed op de spons zelf. Maar wel op zijn maaltijden: kleine diertjes moeten zich wel mee laten slepen door het water en belanden dan tussen de takjes van de spons. Op de takjes zitten haartjes waar de diertjes niet meer aan ontsnappen kunnen. Zodra de spons zijn prooi zo gevangen heeft, verpakt deze de diertjes in een dun membraan en begint ze langzaam te verteren.

 

Zes takken
De onderzoekers ontdekten de spons – die op enorme diepte leeft – met behulp van twee op afstand bestuurbare voertuigen. De eerste spons die de onderzoekers vonden, had maar twee takken met daarop verticale takken. Later werden echter sponzen aangetroffen met tot wel zes horizontale takken, zo meldt het blad Invertebrate Biology. Vanzelfsprekend kan een spons met meer takken ook een groter gebied beslaan en dus meer diertjes vangen.

Bolletjes
Op de foto’s is goed te zien dat zich op de verticale takken kleine bolletjes bevinden. Hierin wordt sperma geproduceerd. Wanneer een waterstroom door de takken beweegt, laat de spons het sperma los. Het zaad wordt meegevoerd en belandt in de takken van andere sponzen waar het eitjes kan bevruchten.

De spons. Rechts een uitvergroting van de bolletjes op de uiteinden van de takjes. Ook zijn op deze foto’s de haakjes en haartjes waarmee de spons diertjes vangt goed te zien. Foto’s: © MBARI.

Wie een spons als C. lyra op de bodem van de zee tegenkomt, moet ongetwijfeld even in zijn ogen wrijven. Want dit is toch een wel heel bijzonder organisme. Ergens is dat echter logisch: een organisme moet van goede huize komen en zich aanpassen, wil het op zo’n diepte, in de kou en het donker kunnen overleven.

Bronmateriaal:
Scientists discover extraordinary new carnivorous sponge” – Mbari.org
De foto bovenaan dit artikel is gemaakt door © MBARI.

°

OUDSTE  DIEREN 

Eerste complexe levensvormen op aarde hadden bijna geen zuurstof nodig

Geschreven op 18 februari 2014 om 08:46 uur door 4

broodspons

Wetenschappers gaan er eigenlijk altijd vanuit dat complex leven op aarde alleen kon ontstaan toen het zuurstofniveau in de atmosfeer vergelijkbaar was met het huidige zuurstofniveau. Maar nieuw onderzoek met sponsdieren spreekt dat tegen: complexe levensvormen hebben helemaal niet zoveel zuurstof nodig om te leven en groeien.

Complexe levensvormen ontstonden zo’n 630 tot 635 miljoen jaar geleden. Hun ontstaan viel samen met een stijging van de hoeveelheid zuurstof in de atmosfeer. Geen wonder dat onderzoekers eigenlijk altijd dachten dat deze organismen zonder die zuurstofstijging nooit tot stand zouden zijn gekomen. Maar een nieuw onderzoek gooit dat idee nu overhoop. (1)

Laag zuurstofniveau
Experimenten met sponsdieren tonen aan dat complexe levensvormen zelfs met 0,5 procent van het huidige zuurstofniveau in de aardse atmosfeer tot hun beschikking kunnen leven en groeien. Het suggereert dat het niet de zuurstofstijging was die het ontstaan van complex leven zo’n 635 miljoen jaar geleden mogelijk maakte. “Onze studies suggereren dat het ontstaan van dieren niet voorkomen werd door een laag zuurstofniveau,” bevestigt onderzoeker Daniel Mills.

COMPLEX LEVEN

Onderzoekers maken onderscheid tussen eenvoudige levensvormen (bacteriën bijvoorbeeld) en complexe levensvormen. Complexe levensvormen onderscheiden zich met name van eenvoudige levensvormen door hun meercelligheid en het feit dat cellen kunnen differentiëren en specialiseren. Onder de complexe levensvormen vallen onder meer dieren, schimmels en planten.

Gelijkenis
De onderzoekers baseren hun conclusies op experimenten met het sponsdier Halichondria panicea. Ze kozen bewust voor dit organisme: de dieren die vandaag de dag op aarde leven en het meest op de eerste complexe levensvormen op aarde lijken, zijn sponsdieren.

“Toen we de sponzen in ons lab plaatsten, bleven ze ademhalen en groeien, zelfs wanneer het zuurstofniveau nog maar 0,5 procent van het huidige zuurstofniveau in onze atmosfeer was.”

Het interessante onderzoek roept een prangende vraag op. Jarenlang waren op aarde alleen maar eencellige organismen te vinden en 635 miljoen jaar geleden ontstond opeens complex leven. Als de zuurstofstijging daar geen of een beperkte rol in speelde: wat veroorzaakte dan deze explosie van complex leven?

“Er moeten andere ecologische en evolutionaire mechanismen in het spel zijn geweest. Misschien bleef het leven lang microbieel, omdat het lang duurde om de biologische ‘machine’ die nodig was om een dier te ‘bouwen’ te ontwikkelen. Misschien bezat de oude aarde geen dieren, omdat complexe, meercellige lichamen nu eenmaal simpelweg moeilijker evolueren.”

Bronmateriaal:
Theory on origin of animals challenged: Animals need only extremely little oxygen” – SDU.dk
De foto bovenaan dit artikel is gemaakt door Minette Layne (via Wikimedia Commons).

°

(Reacties )

(1) .- Misschien was  toch de  sneeuwbal- aarde de trigger voor het ontstaan van complex leven.

(2) .- Het gegeven dat een huidig complex wezen kan leven met weinig zuurstof zegt  niks over juist de ontwikkeling van complexe wezens

–> Gegeven is dat :  eenvoudige levensvormen (stromatolieten/algen) voor een grote toename van zuurstof zorgen (fotosynthese), waardoor een atmosfeer en ozonlaag onstond.

Zuurstof biedt  voordelen: het maakte cellen met specifieke taken mogelijk (door mitochondriën efficiënter gebruik van zuurstof, symbiose, meercellige organismen, complexe organismen, enzovoort).

Dat achteraf een dier met weinig zuurstof kan leven zegt niks over het ontstaan van complexe wezens, er zullen vandaag de dag immers nog meer dieren en planten zijn die in ” ruige ” omstandigheden kunnen overleven.  Echter ;“ruig” is niet gelijk aan anaëroob of zuurstofarm.

http://nl.wikipedia.org/wiki/Sponsdieren

FOSSIELE   SPONZEN  

Sponzen behoren tot de oudst bekende dieren. Fossielen dateren uit het Precambrium.

Sponzen  //Porifera

Het phylum Porifera omvat de sponzen. Dit zijn primitieve meercellige dieren die zich vasthechten op de zeebodem. Ze filteren het zeewater om er voedseldeeltjes uit te halen. Bij sommige fossiele sponzen kun je de uitstroomopening van de spons nog zien waar het gefilterde water naar buiten kwam.

Voorbeeld van een spons uit het cenomaan van Cap Blanc Nez

De meeste sponzen hebben een skelet dat uit kleine skeletdeeltjes (spicula of sponsnaalden) hoorn, kalk of kiezel bestaat. De aanwezigheid van deze naalden is vaak bij fossiele sponzen (onder vergroting) zichtbaar. De onderverdeling van de sponzen geschiedt dan ook op het soort skelet: Hoornsponzen (Demospongiae), Kalksponzen (Calcispongiae) en Glas of Kiezelsponzen (Hexactinellida). Sponzen met een kiezelskelet fossiliseren vrij gemakkelijk. Vooral in afzettingen uit het Krijt tijdperk vinden we vaak fossiele sponzen. De oudst bekende sponzen stammen uit het Precambrium tijdperk.


Voorbeeld van een fossiele spons uit Paulmy, Frankrijk.

Spons-fossiel

     Globe.png

Foto’s of locaties voor Porifera bekijken.

http://www.bloggen.be/info_vuursteen/archief.php?ID=936304

         
Vuursteenconcretie met fossiele sponzen in de holtes, lengte 25 cm,

Detail van de fossiele spons
vuursteeneluvium Haute Normandie

             
Doorgeslagen vuursteenknol, lengte 5 cm,  vuursteeneluvium Pas de Calais

Negatief van de fossiele spons

Gerolde vuursteen met fossiele spons, vuursteeneluvium Pas de Calais

http://community.fortunecity.ws/lavender/scarface/55/locaties/Wilsum/wilsum.htm

Deel van de verzameling Ordovicische sponzen (afgebeeld enkele Caryospongia’s). Het resultaat na vele jaren zoeken

sponzen
Anthaspidella florifera
Astylomanon praemorsa
Ordovicium
Astylomanon praemorsa
Ordovicium
Astylomanon praemorsa
Ordovicium
Astylomanon praemorsa
Ordovicium
Aulocopium cylindraceum
Ordovicium
Carpospongia conwentzi
Ordovicium
Carpospongia castanea
Ordovicium
Carpospongia globosa
(in baksteenkalk)
Ordovicium
Carpospongia globosa 
Ordovicium
Carpospongia globosa
Ordovicium
Carpospongia globosa 
Ordovicium
Patellispongia cf alternata
Ordovicium
Hindia fibrosa
Ordovicium
Hindia sphaeroidalis 
Ordovicium
Hudsonospongia
Ordovicium
Vankempenia

°

http://www.scientias.nl/oudste-fossielen-van-dieren-ontdekt/55384

fossielen uit Namibie

DOODGRAVERS

    insecten  Kevers  

°

Kevermoeder verslindt om voedsel bedelende jongen

23 augustus 2013

Jonge kevers van de soort Nicrophorus lopen het risico te worden opgegeten als ze te veel bedelen om voedsel, zo blijkt uit nieuw wetenschappelijk onderzoek.

http://nl.wikipedia.org/wiki/Doodgravers

 

Nicrophorus vespilloides found on a dead hedgehog by the side of the road, 5-V-2005, Roggebotzand, Flevoland, Netherlands. Det, leg & photo E van Herk
Nicrophorus_vespilloides_wiki

De jonge kevers bietsen om voedsel door met hun pootjes tegen de bek van hun moeder te duwen. Als één van de jongen te vaak bedelt, wordt het dier opgegeten door het vrouwtje.

Dat melden onderzoekers van de Universiteit van Edinburgh in het wetenschappelijk tijdschrift Behavioral Ecology.

Karkas

Kevers van de soort Nicrophorus worden doodgravers genoemd, omdat ze hun eitjes leggen op de lijkjes van kleine dieren zoals muizen en vogeltjes.

Hun nageslacht voeden ze vervolgens door stukjes van het karkas op te slokken, te verteren en weer uit te spuwen in de bek van de jongen.

De wetenschappers testten hoe vrouwtjes reageerden op voortdurend gebedel door de dieren bloot te stellen aan een buitengewoon groot aantal nakomelingen van verschillende moeders, zo meldt nieuwssite Physorg.com. De kevervrouwtjes bleken de jongen die zich het vaakst bij hun bek meldden zonder aarzelen op te eten.

Natuurlijke selectie

De wetenschappers vermoeden dat de vrouwtjes met hun kannibalistische gedrag voorkomen dat jongen die niet continu bedelen te weinig voedsel binnenkrijgen.

In Nederland komen acht soorten doodgravers voor, waarvan drie soorten erg zeldzaam zijn.

Door: NU.nl/Dennis Rijnvis

°

Nicrophorus pustulatus

 

Doodgravers zijn kevers uit de familie van de aaskevers.  Wat ze zo apart maakt, is dat ze voor hun jongen zorgen.  Het zijn vrij grote kevers die 1 tot 4 centimeter groot kunnen worden.  Ze zijn glanzend zwart en hebben een oranje tekening op de rug en zijn behaard op de buik.  De kop is groot en heeft grote ogen.  Rond de hals zitten allerlei bobbels.  De dekschilden bedekken het achterlijf maar niet volledig.  Met deze schilden kunnen ze tsjirpen door de ribbels over elkaar te schuren.  De antennes zijn maar kort met een knots erop.

Het zijn echte roofinsecten die leven van maden van vliegen en aas.  Aas wordt ingegraven door de aarde eronder weg te duwen.  Vaak wordt er met andere doodgravers samen gewerkt.  Als het aas onder de grond zit, dan wordt er gepaard.  In het aas worden de eitjes gelegd.  De moeder blijft bij de eitjes tot ze uitkomen.  Dan worden ze door haar gevoerd zodat ze zich na 7 dagen ontpoppen.

http://macromite.wordpress.com/2010/02/14/mite-farm-or-some-animals-are-more-equal-than-others/

Met parasieten

°

PROTO MAMMALS

Rugosodon eurasiaticus,
Reconstitution d'artiste du <i>Rugosodon eurasiaticus </i>par April Isch, de l'université de Chicago.
August 16, 2013 Chong-Xi Yuan from the Chinese Academy of Geological Sciences in Beijing, China, and colleagues from Carnegie Museum and the University of Chicago reported the discovery of the oldest rodent (1)  fossil ever found

Rugosodon eurasiaticus is the oldest known fossil specimen of a rodent(1). The 160 million-year –old fossil is the earliest representative of the rodent-like group of mammals called multituberculates that inhabited Earth beginning in the Jurassic period and went extinct in the Oligocene epoch.

Rugosodon eurasiaticus was an omnivore based on the animal’s dental structure. The animal was most probably a land dweller but could have inhabited trees part of the time based on the structure of the ankles. The ankles allow for a higher level of rotation than most mammals that are not tree dwellers. The fossil was found in lake sediment and suggests the animal’s main habitat may have been lake shores. The animal was 6.5 inches long and weighed almost three ounces.

This is the most complete multituberculate fossil ever found and is very similar to another sample found in Spain. This similarity indicates the large range and large variety of adaptation that this group of rodents displayed during their long existence.

Rugosodon eurasiaticus and its kin lasted for a little more than 100 million years making these animals one of the longest enduring groups that ever existed.  “

Kommentaren 
(1)
de zin  “the oldest known fossil specimen of a rodent” wordt onmiddelijk gevolgd door  “the earliest representative of the rodent-like group of mammals called multituberculates
*-ik kan daar uit niet opmaken dat het GEEN   knaagdier was maar eerlijk ook niet dat het erwél een  was dus ik hou het in het midden. 
Het gaat dus NIET  noodzakelijk  om  een  voorouder ( of zelfs het oudste lid ) van de  knaagdieren…..  Maar om een knaagdier-achtige multituberculata    die  ook  voorloper kan  zijn  geweest  van latere zoogdieren  en die dmv  convergente evolutie  (en hetzelfde soort   niches van de huidige  knaagdieren  )  de knaagdier-vorm heeft ontwikkeld ….
*Dat knaagdieren  oud zijn wordt  gesuggereerd door de enorme  aantallen soorten  die deze  groep telt
 
De tanden wijzen  erop  dat het fossiel toebehoorde aan een  een omnivoor    : dus geen echt  herbivoor   “knaagdier” ……. (  echter ratten en muizen lijken  ook  wél omnivore opportunisten   te zijn  ) …..
°
VROEGE   ZOOGDIEREN 
Zoogdier-tanden
Multituberculata tanden 
  <— klik voor vergroting
Alternative interpretations of early mammalian history
Reproduced with permission by Macmillan Publisher Ltd.
from Cifelli and Davis (here) copyright 2013
°

Harig proto-zoogdier bevestigd  dat de vacht eerder ontstond dan

zoogdieren zelf  (1)

Megaconus mammaliaformis,

°

°

08 augustus 2013   3

megaconus

Wetenschappers hebben in China de fossiele resten van een nieuw proto-zoogdier ontdekt. Het 165 miljoen jaar oude dier laat zien dat haar en vacht – typische eigenschappen van een zoogdier – al lang voor de totstandkoming van echte zoogdieren hun oorsprong vonden.

De onderzoekers ontdekten het dier in Mongolië. Ze hebben het de naam Megaconus mammaliaformis gegeven. Het beestje leefde zo’n 165 miljoen jaar geleden en is een zogenoemd proto-zoogdier. Dat wil zeggen dat het een verre voorouderlijke verwant is  van de moderne zoogdieren

Hoewel het beestje al wel eigenschappen van een zoogdier heeft, mag deze nog niet echt een zoogdier worden genoemd.

proto mammals

De fossiele resten die in Mongolië zijn aangetroffen. Foto: Zhe-Xi Luo, University of Chicago.

Fossil

April Isch / University of Chicago
The newly discovered fossil is one of the best-preserved early mammal ancestors ever found, and provides some of the earliest evidence of pre-mammalian hair. 
New proto-mammal fossil sheds light on evolution of earliest mammals
Guard hairs and underfur surrounding the tail are clear in the Megaconus fossil. Credit: April Isch, Zhe-Xi Luo, University of ChicagoRead more at: http://phys.org/news/2013-08-proto-mammal-fossil-evolution-earliest-mammals.html#jCp

Harig
Wat de ontdekking van M. mammaliaformis zo bijzonder maakt, is dat het fossiel uitzonderlijk goed bewaard is gebleven. Zo goed dat zelfs sporen van de dekharen en ondervacht zijn teruggevonden.

Daarmee is M. mammaliaformis het tweede harige proto-zoogdier dat tot op heden is ontdekt.
Megaconus bevestigt dat veel biologische functies van moderne zoogdieren die samenhangen met de huid en huidbedekking al geëvolueerd waren voordat de moderne zoogdieren ontstonden,” vertelt onderzoeker Zhe-Xi Luo.
De vondst is belangrijk, omdat deze ons meer kan vertellen over de evolutie van zoogdieren en dan bijzonder de overgang van proto-zoogdieren naar de zoogdieren zoals we die vandaag de dag kennen.
Megaconus laat ons zien dat veel aanpassingen die we vandaag de dag bij moderne zoogdieren zien, al werden uitgeprobeerd door onze verre, uitgestorven familieleden.”Alleseter
M. mammaliaformis was ongeveer zo groot als een grondeekhoorn en at waarschijnlijk van alles: insecten, wormen, planten, maar wellicht ook kleine gewervelden. Aangezien er op de buik van het dier bijna geen haren zijn aangetroffen, vermoeden de onderzoekers dat deze onbehaard was.
°
Op de hielen bevindt zich een uitsteeksel dat mogelijk giftig was.MOZAIK  Vooral het gebit en de kaak van de nieuwe soort doet denken aan moderne zoogdieren.=
°
” …. Its molars had elaborate rows of cusps for chewing on plants, and some of its anterior teeth possessed large cusps that allowed it to eat insects and worms, perhaps even other small vertebrates. It had teeth with high crowns and fused roots similar to more modern, but unrelated, mammalian species such as rodents. Its high-crowned teeth also appeared to be slow growing like modern placental mammals.
°
The skeleton of Megaconus, especially its hind-leg bones and finger claws, likely gave it a gait similar to modern armadillos, a previously unknown type of locomotion in mammaliaforms.  
°
Verder zijn er ook eigenschappen aangetroffen die weer meer doen denken aan reptielen.= “….Its primitive middle ear, still attached to the jaw, was reptile-like. Its anklebones and vertebral column are also similar to the anatomy of previously known mammal-like reptiles….”
°
 “We kunnen niet zeggen dat Megaconus onze directe voorouder is,” legt Luo uit. “Maar het dier ziet er zeker uit als een achterachterachteroom die 165 miljoen jaar van ons verwijderd is.”
°
Bronmateriaal:
New proto-mammal fossil sheds light on evolution of earliest mammals” – UCHospitals.edu
De afbeelding bovenaan dit artikel is gemaakt door April Isch / Zhe-Xi Luo, University of Chicago.

(1) Was al langer bekend  ; 

  • De therapsiden (reptielen) hadden een vacht. Niet toevallig de voorlopers van de zoogdieren.

°

A new Haramiyid indicating a complex pattern of evolution in Mesozoic mammals

Arboroharamiya jenkinsi (STM33-9)

Aug 13, 2013

http://en.wikipedia.org/wiki/Arboroharamiya

Arboroharamiya is an extinct genus of early mammal (or possibly a non-mammalian mammaliaform) from the Middle Jurassic Tiaojishan Formation of Inner Mongolia,

http://www.nature.com/nature/journal/v500/n7461/full/nature12353.html

A new Haramiyid indicating a complex pattern of evolution in Mesozoic mammals

Fig.1 The holotype specimen and line drawing of Arboroharamiya jenkinsi (STM33-9). Credit: BI Shundong

The counterpart of the holotype is illustrated in Supplementary Fig. 1. ca, calcaneum; ca1–17, first to seventeenth caudal vertebrae; ip, intermediate phalanges; ip2–5, second to fifth intermediate phalanges; mc2–5, second to fifth metacarpals; mt1–5, second to fifth left metatarsals; mt2–5, second to fifth right metatarsals; l1–7, first to seventh lumbar vertebrae; lc, left clavicle; lfe, left femur; lfi, left fibula; li, left ilium; lis, left ischium; lm, left mandible; lra, left radius; lti, left tibia; lu, left ulna; pp, proximal phalanges; pp1–5, first to fifth proximal phalanges; rfe, right femur; rfi, right fibula; ri, right ilium; rm, right mandible; rra, right radius; rti, right tibia; ru, right ulna; t, thoracic vertebrate; tp, terminal phalanges; tp1–5, first to fifth terminal phalanges; tr, thoracic ribs; s1–2, first to second sacral vertebrae; ?, unknown element.

A new Haramiyid indicating a complex pattern of evolution in Mesozoic mammals

Fig.2 Teeth, mandibles and tooth occlusal relationships of Arboroharamiya jenkinsi. Credit: BI Shundong

a, Occlusal views of right upper and lower incisors (I/i), premolars (P/p) and molars (M/m). Some of the teeth (Supplementary Fig. 3) have been photographically flipped in the stippling drawings. The general shape of p4 is similar to that of Kermackodon, one of the earliest known multitubuerculates4, but differs from it in lacking serrations. m1 and m2 are similar in having a high and inflated cusp a1 with cusps decreasing height distally. The distal end of the central basin is closed by cusps. Enamel ridges extend distally from cusps towards the basin, which enhance grinding as A1 of the upper molar ‘moves’ in the valley. The upper premolar differs from molars in being more rounded, with the broad central basin bearing numerous small cusps or crenulations. Upper molars are more mesiodistally elongate and have cusps A1 and A5 the largest and ridges extending mesially. Cusp B3 is the largest in cusp B-row. b, Buccal (top) and lingual (bottom) views of the mandible show the anterior extension of the masseteric fossa to the level below p4 and lack of the postdentary trough (Supplementary Fig. 2). The empty arrows point to the angular process. c, Line drawings illustrate the cusp numbering of M1 and m1 (right column) following ref. 2 and their relationship in occlusion (upper left). Grey arrows show the relative movements of a1 of m1 and A1 of M1 (bottom left).

Tooth identification, measurements and photographs in Supplementary Information.

Fig.3 Reconstruction of Arboroharamiya jenkinsi. Credit: BI Shundong

Read more at: http://phys.org/news/2013-08-haramiyid-indicating-complex-pattern-evolution.html#jCp

Institute of Vertebrate Paleontology and Paleoanthropology search and more info website

  1. Relationship of Arboroharamiya and geological distributions of major groups of Mesozoic mammals and their relatives.
  2. Figure 4  ::Relationship of Arboroharamiya and geological distributions of major groups of Mesozoic mammals and their relatives.

Thin lines represent the phylogenetic relationships and thick lines indicate geological distributions of the taxa. This is a simplified consensus tree (Supplementary Fig. 11) of 12 equally most parsimonious trees of PAUP (Phylogenetic Analysis Using Parsimony and Other Methods, version 4.0b), an analysis of 436 characters and 56 taxa with a focus on Mesozoic non-therian groups (modified from ref. 23; parts G–I in Supplementary Information). Test analyses for alternative hypotheses are in part J of Supplementary Information.