Notes C : Observations / waarnemingen

 

notes

 

°

DIRECTE  EN INDIRECTE  WAARNEMING (1)

Het is aantoonbaar dat dingen die te ver weg zijn om direct te zien, of te groot zijn om direct te zien, of te klein zijn om direct te zien, of te ver in het verleden om direct te zien, gevolgen kunnen hebben die wel direct waarneembaar zijn.

 

  • Het is hierop dat wetenschap is gebaseerd.
  • Het is hierop dat biologie is gebaseerd, net als natuurkunde, chemie, astronomie, Kosmologie

°

zie ook = 

http://www.talkorigins.org/faqs/comdesc/sciproof.html

 

 

(1)

Naast de  wetenschapspraktijk van het empirisch ( direct en indirirect )waarnemen en verzamelen van tastbaar feiten  … is er natuurlijk ook de theoretische  wetenschap ….. 

Beide insteken  van en voor   kennisvergaring en ordening ( en onderlinge correcties ) gaan samen in de (natuur)wetenschap 

  • De theoretische wetenschap controleert of er geen fouten zijn gemaakt  in zowel de redeneringen als de observaties  … Nogal relevant is daarbij (bijvoorbeeld )het ontmaskeren van foutieve gevolgstrekkingen  op grond van drogredeneringen  //
  • zie bijvoorbeeld  

NOTA  : observaties  kunnen ook “vervuild”  worden , door  illusies  waarbij de hersenen  ingewikkelde  zintuigelijke  waarnemingen  herleiden tot  “bekendere ” herkenbare patronen

bijvoorbeeld

uiteraard zijn  ook hier  controle en  andere  benaderingen en insteken …… de remedies om ze   weg te filteren  uit het uiteindelijke  model  dat primair  was  gebaseerd op “waarnemingen ” …..

 

°

De theoretische wetenschap maakt bovendien “voorspellingen ” die moeten uitkomen (= geconstateerd door de (op hun beurt controleerbare )observatie(s )

°

Organigram van de “wetenschappelijke methode “

 

WETENSCHAPPELIJKE METHODE

 

1.  What is science?

Science is a way to understand nature by developing explanations for the structures, processes and history of nature that can be tested by observations in laboratories or in the field.  Sometimes such observations are direct, like measuring the chemical composition of a rock.  Other times these observations are indirect, like determining the presence of an exoplanet through the wobble of its host star.  An explanation of some aspect of nature that has been well supported by such observations is a theory.  Well-substantiated theories are the foundations of human understanding of nature.  The pursuit of such understanding is science.

2.  What is religion?

Religion, or more appropriately religions, are cultural phenomena comprised of social institutions, traditions of practice, literatures, sacred texts and stories, and sacred places that identify and convey an understanding of ultimate meaning.  Religions are very diverse.  While it is common for religions to identify the ultimate with a deity (like the western monotheisms – Judaism, Christianity, Islam) or deities, not all do. There are non-theistic religions, like Buddhism.

3. What is the difference between science and religion?

Although science does not provide proofs, it does provide explanations. Science depends on deliberate, explicit and formal testing (in the natural world) of explanations for the way the world is, for the processes that led to its present state, and for its possible future. When scientists see that a proposed explanation has been well confirmed by repeated observations, it serves the scientific community as a reliable theory. A theory in science is the highest form of scientific explanation, not just a “mere opinion.” Strong theories, ones that have been well confirmed by evidence from nature, are an essential goal of science. Well-supported theories guide future efforts to solve other questions about the natural world.

Religions may draw upon scientific explanations of the world, in part, as a reliable way of knowing what the world is like, about which they seek to discern its ultimate meaning.  However, “testing” of religious understandings of the world is incidental, implicit and informal in the course of the life of the religious community in the world.  Religious understanding draws from both subjective insight and traditional authority.  Therefore, some people view religion as based on nothing more than personal opinion or “blind faith,” and so, as immune to rational thought.  However, this is an erroneous judgment.  Virtually all of the historic religions include traditions of rational reflection.

 

Notes C ; Causaal en correlatie

notes

 

 

°

Correlatie

Men spreekt van correlatie als er sprake is van een samenhang tussen variabelen in (reeksen van) metingen. Zo bestaat er bijvoorbeeld een logische correlatie tussen de temperatuur en het jaargetijde.
Gevonden op http://www.multiscope.nl/kennis/begrippen.html

 

CAUSAAL  EN CORRELATIE 

Correlation does not imply causation – Wikipedia, the free encyclopedia// // //

°
Het is aantoonbaar dat bepaalde oorzaken gevolgen hebben.

°
Het is aantoonbaar dat correlatie vaak een indicatie is van causatie.

°

MAAR DAT BETEKENT NIET DAT gefocuste  CORRELATIE uitspraken ALTIJD de CAUSATIE heeft gevonden  en dus ook  bij naam impliceert en aanduidt :…… of zelfs  DE ECHTE OORZAKEN  al heeft gevonden of   zelfs KAN VINDEN( bijvoorbeeld ) omdat de correlatie gegevens te beperkt of onvoldoende zijn )

*

en

*

dat geld in het bijzonder voor  statistische  gegevens waarbij men voorbarig  en (onnauwkeurige of regelrecht onzinnige of “uitgevonden ”   ) causale verbanden legt (bijvoorbeeld wanneer men oorzaken aanhaalt die  supernaturalistisch zijn —> Goddidit , de ( maar -dan- placebo) effekten van bijvoorbeeld “bidden ” )

of oorzaken vind door gewoon  massa’s nieuwe ( bijvoorbeeld  psychiatrische ) termen uit te vinden die men vervolgens  gebruikt als (mogelijk)stigma en/of gaat vervolgens die mensen (= kinderen ?) behandelen  met  “geneesmiddelen “(1)

°

Causaal verband

Dit is het verband tussen oorzaak en gevolg.
Hierbij dient rekening gehouden te worden met de toepasselijke causaliteitsleer.
Gevonden op http://www.encyclo.nl/lokaal/10251

Causaal verband is duidelijk empirisch aantoonbaar  dmv  (in)directe waarnemingen die gebeuren in een bepaalde opstelling waarvan de  parameters  gecontroleerd  kunnen worden gevarieerd  ….. Voorwaarde is  dat

  • oorzaak en  gevolgen onafhankelijk van elkaar  en buiten de opstelling  als werkeleijk bestaand  kunnen worden aangetoond  en/of gemeten
  • de   redenering  of het verband    Oorzaak —> gevolg ,  kan dus niet zomaar worden omgekeerd (logisch wél valabel  natuurlijk)  :  geconstateerde fenomenen  —> (bekende )oorzaak  …. omdat men onafhankelijke waarnemingen moet beritten die aantonen dat de ( veronderstelde ) oorzaak  werkelijke bestaat  ……

Filosofie   :

de drogreden : 

Cum hoc ergo propter hoc

Correlation does not imply causation is a phrase in science and statistics that emphasizes that a correlation between two variables does not necessarily imply that one causes the other.

Many statistical tests calculate correlation between variables. A few go further and calculate the likelihood of a true causal relationship; examples are the Granger causality test and convergent cross mapping.

The counter assumption, that correlation proves causation, is considered a questionable cause logical fallacy in that two events occurring together are taken to have a cause-and-effect relationship. This fallacy is also known as cum hoc ergo propter hoc, Latin for “with this, therefore because of this”, and “false cause”. A similar fallacy, that an event that follows another was necessarily a consequence of the first event, is sometimes described as post hoc ergo propter hoc (Latin for “after this, therefore because of this”).

 

(Uit Wikipedia, de vrije encyclopedie)

Cum hoc ergo propter hoc(Latijn voor “met dit, dus vanwege dit”) is een drogreden waarbij twee gebeurtenissen die samen optreden verkeerdelijk voorgesteld worden als oorzaak en gevolg. Een verband wordt dus ten onrechte voorgesteld als een oorzakelijk verband.

Bijvoorbeeld:

Tieners gaan veel uit.                          (propositie ) p1
Tieners hebben puistjes.                     (propositie) p2
________________________
Dus: uitgaan veroorzaakt puistjes.  (afgeleide conclusie)  C1

Soms is het verband gewoon toeval, zoals hierboven, soms kan een derde gebeurtenis de oorzaak zijn van beide gebeurtenissen.

Bijvoorbeeld:

Er is een sterk verband tussen de verkoop van roomijs en de misdaadcijfers.
Dus: roomijs veroorzaakt misdaad.

Dit is een “cum hoc ergo propter hoc” drogreden, omdat in de werkelijkheid warmte zowel de verkoop van roomijs als de misdaad bevordert.

Soms worden oorzaak en gevolg gewoon verwisseld. Bijvoorbeeld:

Mensen die in een rolstoel zitten hebben meer ongevallen gehad dan gemiddeld.
Dus: mensen in een rolstoel lopen meer risico.

Natuurlijk is het omgekeerd: mensen die een ongeval hebben gehad zitten daarom vaker in een rolstoel. Zie ook: Omkering van oorzaak en gevolg

Cum hoc ergo propter hoc – Wikipedia// // //

°

 

(1) …..Net zoals men vroeger (het  tegenwoordig  als normaal en bepaald geen ongezond verschijnsel , = )”masturbatie ” beteugelde  omdat het een  “zondige “( of “schadelijke”=   je zou er bijvoorbeeld een zwakke rug van kunnen krijgen, beweerde men   🙂 ) handeling was die men ook medisch kon intomen (kalmeermiddelen , plantextracten (valeriaan ) valium  etc …)…..

Veel van die geneesmiddelen hebben echter  (zoals alle geneesmiddelen ) ongewenste bijwerkingen  …men kan zelfs in sommige gevallen spreken van chemische castratie …..

°

Zie ook(gerelateerd ) =

Teologie argument en causaal verband  <— archief doc 

 

 

°

 

Notes S ; Selectiedruk

° 

°

SELECTIEDRUK

Selectiedruk

Uit Wikipedia, de vrije encyclopedie

Selectiedruk is in de evolutiebiologie het effect dat de natuurlijke selectie uitoefent op de genetische variatie of genfrequentie binnen een bepaalde populatie van een   soort(species ) . Bepaalde eigenschappen van individuen beïnvloeden hun relatieve kans om nageslacht achter te laten. Deze interactie tussen die eigenschappen en hun omgevingsfactoren in ruimste zin heet de “selectiedruk”. Als een bepaalde selectiedruk geacht wordt aanwezig te zijn, impliceert dat een overeenkomende verwachting ten aanzien van de verandering van de genfrequentie, ofwel de evolutie.

  1. selectiedruk
    Invloed van milieufactoren, waardoor genfrequenties veranderen.
    Gevonden op http://www.digischool.nl/bi/pbb/search.php

Selectiehandvat ….de genetische  varianten in een populatie   die in een bepaald millieu de   betere    (hoe klein die ook mogen zijn  in vergelijking met het geheel van de populatie )  verwachte   overlevings en voortplantingskansen (fittness) bezitten

°

http://en.wikipedia.org/wiki/Evolutionary_pressure

Any cause that reduces reproductive success in a proportion of a population, potentially exerts evolutionary pressure or selection pressure.[1] With sufficient pressure, inherited traits that mitigate its effects – even if they would be deleterious in other circumstances – can become widely spread through a population. It is a quantitative description of the amount of change occurring in processes investigated by evolutionary biology, but the formal concept is often extended to other areas of research.

In population genetics, selection pressure is usually expressed as a selection coefficient.

 

(Microbiology ) Any cause that reduces reproductive success in a proportion of a population, potentially exerts evolutionary pressure or selection pressure.  (wiki) 

Examples of selective pressure in the following topics:

°

SELECTION PRESSURE  is any phenomena which alters the behavior and fitness of living organisms within a given environment. It is the driving force of evolution and natural selection.

http://wiki.answers.com/Q/What_is_selection_pressure_in_biology

°

selective pressure

  • Environmental conditions leading to differential fitness based on the value of any  particular trait …
    – the pressure of competition to survive and have surviving offspring. The word “selection” refers to the fact that some variants (the “fittest”) are better at doing this than others.

 

selective pressure(evolution)

Those  factors  and processes that influence the direction of natural selection.
(Medical ) impact of effective reproduction  due to environmental impact on the phenotype.

_

“THE PRESSURE  OF SELECTION  ” 

http://whyevolutionistrue.wordpress.com/2013/09/29/selection-pressures-are-metaphors-so-are-the-laws-of-physics/

“Selection pressures” is a shorthand term for something a bit more complicated.

°

—it is a metaphor, a descriptor of what happens when different genes (i.e. “alleles”, or forms of a single type of gene) leave different number of copies.   That differential reproduction of genes is what constitutes natural selection,, and it is a process of gene sorting.

There are no “pressures” of selection imposed on the organism from the outside.

What happens, as everyone knows who learns introductory evolution, is that, in a given environment, some genes leave more copies than others, usually because they increase the reproductive output of their possessor.

Take, for example, a population of brown bears that somehow find themselves in a white-colored environment, like the Arctic.

There are genes affecting coat color, and imagine that a given gene comes in several forms, one of which makes the bear lighter in color than do the alternative forms.  This being a population of bears, there will be variation among their genes due to mutation. Those bears carrying the “light” forms of genes might do better than their browner confrères because they’re more camouflaged in the snow, and thus better at sneaking up on seals and killing them.  “Light-gene” bears will be better fed, and thus have better survival and (crucially) more offspring. (If the color change affects survival but not reproductive output, no natural selection ensues.)  In the next generation, the proportion of color genes having the light form will be higher than before. And the average color of the bear population will be a bit lighter.

If this continues over many generations, and other mutations occur that yield even lighter coats, natural selection will move the bears from brown to white. Presumably this is what happened in polar bears, whose ancestors were probably brown. And it’s happened in many Arctic animals whose ancestors were brown but evolved white color (either pemanently or seasonally) via natural selection.

Such animals include the Arctic fox, the Arctic hare, the ptarmigan, the snowy owl, the harp seal, and so on (see a list here).

arctic-animals-main
What “selection” pressures can do: white Arctic mammals.

Note that the environment isn’t exerting any “pressure” here. It is simply providing a milieu in which one gene has an advantage over another. The environment cannot see the genes and their constituent DNA.

°

We speak of “selective pressure to become light-colored” as simple shorthand for the process I’ve described above.

°

—> Is the use of metaphors confusing ?                                                                                                                                                                                      Metaphors are useful if as they enlighten rather than confuse.

–>   I claim that both “selection pressures” and “selfish genes” are enlightening,

—>The term “laws of physics” is also a metaphor, or a  enlightening  shorthand descriptor.                                                                                             There are no “laws of physics,” but just regularities in the universe that appear to be ubiquitously “followed”. 

 

NOTES B

INHOUD —-> https://tsjok45.wordpress.com/2012/09/03/evodisku/

Bacillus thuringiensis(Bt)        deze bacterie komt voor in de natuur en scheidt eiwitkristallen uit die toxisch zijn voor een aantal insecten (vooral rupsen). Bt wordt gebruikt als biologisch pesticide. De genetische eigenschap om het toxine te maken, werd via genetische modificatie ook ingebracht in planten.

Bacillus thuringiensis with the parasporal body next to the forming endospore.
The parasporal body (or parasporal crystal) acts as a biopesticide against the caterpillar stage of over 100 species of moths.
http://pathmicro.med.sc.edu/fox/cell_envelope.htm

BACTERIEËN   proto-cellige micro-organismen; slechts een erg  klein deel van deze organismen is ziekteverwekkend.
Diagram van een model-bacterie cel

 

Basic Concepts in Science: A list

July 14, 2007 John S. Wilkins

This is a list of the Basic Concepts posts being put up by Science Bloggers and others. It will be updated and put to the top when new entries are published. If you are not a Scienceblogger, email me (see below) and let me know of your post, or someone else’s. If you want suggestions for a topic to write on, just ask.

 

Recent additions:

Anyone can add to this series, even if you don’t blog on Science Blogs. Email me!

 

Physics and Astronomy

Energy by Chad Orzel at Uncertain Principles
Fields by Chad Orzel at Uncertain Principles
Force by Chad Orzel at Uncertain Principles
Measurement by Chad Orzel at Uncertain Principles
Entropy by Rob Knop at Galactic Interactions
Redshift by Rob Knop at Galactic Interactions
Understanding Electricity by Scott Aaronson at Shtetl-Optimized
Ohm’s Law by Chad Orzel at Uncertain Principles
Estimation and DImensions by Chad Orzel at Uncertain Principles
De Broglie Equation (quantum physics) by Wandering Primate
Phase changes, by Janet Stemwedel at Adventures in Science and Ethics

A shopping list of sought Basics for physics is given here by physics is fundamental at Cocktail Party Physics.

Geology

The Composition of the Earth by Chris Rowan at Highly Allochthonous
Chronology and Stratigraphy by Chris Rowan at Highly Allochthonous
Paleomagnetism by Chris Rowan at Highly Allochthonous

Skepchick has a series of articles on the origins of the earth:

Chemistry

pH by Cat at Lab Cat
Strong and Weak Acids by Cat at Lab Cat
Acids and Bases by Cat at Lab Cat
What is Food Science? by Cat at Lab Cat
Food Chemistry by Cat at Lab Cat
Elements by Janet Stemwedel at Adventures in Ethics and Science
Polar and Non-polar Molecules by Janet Stemwedel at Adventures in Ethics and Science
Intermolecular Forces by Janet Stemwedel at Adventures in Ethics and Science

Biology

Genes and Genomes
Gene by PZ Myers at Pharyngula
What is a Gene? by Larry Moran at Sandwalk
Gene by Greg Laden
New definitions of a Gene by Allen McNeill at The Evolution List
The Richard Dawkins Definition of a Gene Is Seriously Flawed by Larry Moran at Sandwalk
The Central Dogma of Molecular Biology by Larry Moran at Sandwalk
How Proteins Fold by Larry Moran at Sandwalk
Heat Shock and Molecular Chaperones by Larry Moran at Sandwalk
The Genetic Code by Larry Moran at Sandwalk
ABO Blood types by Larry Moran at Sandwalk
Genetics of ABO Blood types by Larry Moran at Sandwalk
Genetics of Eye Color by Larry Moran at Sandwalk
Collagen by Larry Moran at Sandwalk
How do you sequence a Genome? Parts I, II, III, IV, V, and VI by Ask Dr Science at Discovering Biology in a Digital World
What are Hypothetical and Putative Proteins? by Ask Dr Science at Discovering Biology in a Digital World
Linkage Disequilibrium by Razib at Gene Expression
Mutations by evolgen at Coalescence
Allele by Mike Dunford at The Questionable Authority

Evolution and Phylogenetics
Evolution by Larry Moran at Sandwalk
The Many Faces of ‘Evolution’ by John Wilkins at Evolving Thoughts

Understanding Natural Selection: Essential Concepts
and Common Misconceptions/T. Ryan Gregory

http://www.springerlink.com/content/2331741806807×22/fulltext.pdf
http://sandwalk.blogspot.com/2009/06/what-is-natural-selection.html
The Three Necessary and Sufficient Conditions of Natural Selection by Greg Laden
Modes of Natural Selection by Greg Laden
What makes Natural Selection an adaptive process? by Carl Bajema at Evolving Thoughts
Artificial and Natural Selection by Mike the Mad Biologist
Sexual Selection by Razib at Gene Expression
Human Evolution 1001 by Greg Laden
Fitness by John Wilkins at Evolving Thoughts
Measuring Fitness by Mike Dunford at The Questionable Authority
Clade by John Wilkins at Evolving Thoughts
Species by John Wilkins at Evolving Thoughts
Primitive by John Wilkins at Evolving Thoughts
Macroevolution by John Wilkins at Evolving Thoughts
Ancestors by John Wilkins at Evolving Thoughts
Why Spiders aren’t Insects, parts I, II, III, IV, and V by Jeremy Bruno at The Voltage Gate
Allopatry and sympatry by John Wilkins at Evolving Thoughts

Ecology and Environment
What is Ecology? by Jeremy Bruno at The Voltage Gate
Biomes I by Jeremy Bruno at The Voltage Gate
Biomes: Tropical Rain Forest by Jeremy Bruno at The Voltage Gate
Biomes III: Tropical Dry Forest by Jeremy Bruno at The Voltage Gate
Biomes IV: Tropical Savannah by Jeremy Bruno at The Voltage Gate
Biomes V: Deserts by Jeremy Bruno at The Voltage Gate
Biomes VI: Temperate Grassland by Jeremy Bruno at The Voltage Gate
Biomes VII: Temperate Forest by Jeremy Bruno at The Voltage Gate
Conservation versus Preservation by Joshua Rosenau at Thoughts from Kansas

Developmental biology

The Pharyngula Stage by PZ Myers at Pharyngula
Gastrulation in Vertebrates by PZ Myers at Pharyngula
Gastrulation in Invertebrates by PZ Myers at Pharyngula
Neurulation by PZ Myers at Pharyngula
Allometry by PZ Myers at Pharyngula

Other or multiple topics
Artifacts and Vectors by Ask Dr Science at Discovering Biology in a Digital World
8th Grade Math (Hardy Weinberg, Genetic Variance, Molecules and Phylogenies, Kin) by Razib at Gene Expression
Biological Clock by Bora Zivkovic at A Blog Around the Clock
Anisogamy by Matt, at Behavioral Ecology Blog
Cell migration by Dan, at Migrations
Hearing by Shelley at Retrospectacle
How do we smell? by Sunil at balancing life.
Prions by Shelley at Retrospectacle
Cell Theory by Dan at Migrations
Blood Clotting by Larry Moran at Sandwalk

Teaching resources for biology
Bora Zivkovic at A Blog Around the Clock has a series of lectures as posts that teachers may find useful, his BIO101 speed-course lecture (and lab) notes. Almost none of them cover a very narrow term or concept (some come close):

Historical and social sciences

Pottery in Archeology by CFeagans at Hot Cup of Joe
Cause, Manner and Mechanism of Death [Forensic science] by William the Coroner at Dr Zeus’s Forensic Files

 

Mathematics, Philosophy, Logic and Computer Science

Statistics
Normal Distribution by Mark Chu-Carroll at Good Math, Bad Math
Mean, Median and Mode by Mark Chu-Carroll at Good Math, Bad Math
Standard Deviation by Mark Chu-Carroll at Good Math, Bad Math
Margin of Error by Mark Chu-Carroll at Good Math, Bad Math
Correlation (and Causation, and Random Variables) by Mark Chu-Carroll at Good Math, Bad Math
Binary Search by Mark Chu-Carroll at Good Math, Bad Math
Innumeracy by Mark Chu-Carroll at Good Math, Bad Math
Percentage and percentage points by Kristjan Wager at Pro-Science

Statistics Primer, Part 1, 2, 3, 4, and 5 by Echidne of the Snakes
[Unfortunately, each post does not open in a separate window, but the whole thing is accessible from here]

General Mathematics

Multidimensional Numbers by Mark Chu-Carroll at Good Math, Bad Math
Vectors by Mark Chu-Carroll at Good Math, Bad Math
Algebra, by Mark Chu-Carroll at Good Math, Bad Math
Calculus by Mark Chu-Carroll at Good Math, Bad Math
Limits by Mark Chu-Carroll at Good Math, Bad Math
Recursion by Mark Chu-Carroll at Good Math, Bad Math
Turing Machine by Mark Chu-Carroll at Good Math, Bad Math
The Halting Problem by Mark Chu-Carroll at Good Math, Bad Math
Real Numbers by Mark Chu-Carroll at Good Math, Bad Math
Algorithm by Mark Chu-Carroll at Good Math, Bad Math
Discrete versus Continuous [Mathematics] by Mark Chu-Carroll at Good Math, Bad Math
Infinity and Infinite Sums by Jason Rosenhouse at EvolutionBlog
Numbers by Jason Rosenhouse at EvolutionBlog
Metric System by Jim at Chimpanzee Refuge
Modular Arithmetic by Alon Levy at Abstract Nonsense
Theories, Theorems, Lemmas and Corollaries by Mark Chu-Carroll at Good Math, Bad Math
Fractals by Karmen at Chaotic Utopia

Logic and Computability
Logic by Mark Chu-Carroll at Good Math, Bad Math
Modal Logic by Mark Chu-Carroll at Good Math, Bad Math
Syntax and Semantics by Mark Chu-Carroll at Good Math, Bad Math
Sets by Mark Chu-Carroll at Good Math, Bad Math
Arguments by Janet Stemwedel at Adventures in Ethics and Science
Optimization by Mark Chu-Carroll at Good Math, Bad Math
Axioms by Mark Chu-Carroll at Good Math, Bad Math
Going Meta by Mark Chu-Carroll at Good Math, Bad Math
Parallel, Distributed, and Concurrent by Mark Chu-Carroll at Good Math, Bad Math

Philosophy, Philosophy of Science
The Feminist Theory of Science by Zuska, at Thus Spake Zuska
Falsifiable Claims by Janet Stemwedel at Adventures in Ethics and Science
Epistemology by Benjamin Cohen at The Worlds Fair
Theory by John Wilkins at Evolving Thoughts
Introductory texts for philosophy of biology by John Wilkins at Evolving Thoughts
Scientific Method by Rob Knop at Galactic Interactions
Laws and theories by Rob Knop at Galactic Interactions
Likelihood Theory by Mike the Mad Biologist

Medicine and Psychiatry

Introduction to Microbiology and Infectious Disease by Tara C. Smith at Aetiology
Normal flora, Normal Flora 2 by Tara C. Smith at Aetiology
Determining the Cause of Disease (Koch’s Postulates) by Sandra Porter at Discovering Biology in a Digital World
Seasonal Affective Disorder by Bora Zivkovic at A Blog Around the Clock
Selection of Antidepressants, Part I, Part 2 Part 3 by Corpus Callosum
Balloons, Stents and Arteries by Burt Humburg at The Panda’s Thumb
The history of hormone therapy and menopause, parts 1, 2 and 3 by Evil Monkey at Neurotopia

Learning Science

Learning Styles and Science Labs by Sandra Porter at Discovering Biology in a Digital World

In each case, read the comments too.

I’ve decided to list these by field and topic and author, respectively (this allows multiple authors to cover one topic, as in Gene).

BETACANON

http://www.kennislink.nl/kernwoorden


http://www.volkskrant.nl/vk/nl/2864/Betacanon/actualiteit/index.dhtml




De Normale verdeling

Wie nu in de caravan zit, omdat het buiten regent, en bovendien kinderen in de mens-erger-je-niet-leeftijd heeft, weet het: met een dobbelsteen …



BIODIVERSITEIT          verscheidenheid aan organismen, die voorkomen in de natuur. Biodiversiteit in de context van biotechnologie betekent ook de aanwezigheid van een grote variatie aan genetische kenmerken (bv. variëteiten) van een soort.

BIOTECHNOLOGIE     de toepassing van biologische mechanismen in productieprocessen. Meer specifiek is de biotechnologie een multidisciplinaire wetenschap en technologie, die vooral steunt op de in-vitrocultuur en op gerichte genetische modificatie van microbiële plantaardige of dierlijke systemen, met het oog op het verkrijgen van nuttige producten of effecten. http://nl.wikipedia.org/wiki/Biotechnologie

BIOSTRATIGRAFIE         Bron

http://www.freethinker.nl/forum/viewtopic.php?t=6685&start=120&sid=37e9f907e19a9c46f5c986ab00d02564
CollegaVanEric (CVE)Biostratigrafie : is de wetenschap die aan de hand van microfosielen probeert een eenduidige wereldwijde tijdtabel te maken.Het probleem voor creationisten die geloven in een wereldwijde vloed is dat microfossielen zeediertjes zijn met dezelfde natuurkundige eigenschappen (zoals drijfvermogen) en dat je dus niet op basis van gewicht, intelligentie of zwemkracht een sortering kunt maken. De enige verklaring die rest is dat de soorten na elkaar geleefd hebben en niet gelijktijdig.
http://nl.wikipedia.org/wiki/Biostratigrafie

Voorbeeld: pleistocene schelpen in boring diemerbrug

Vergroting –>http://nl.wikipedia.org/wiki/Bestand:25G132_Diemerbrug_Range_Chart.jpg

BLOTS (BLOTTING )       letterlijk: vlekken.

Dit is een techniek die gebruikt wordt om bepaalde fragmenten terug te vinden na gel-elektroforese van DNA (Southern blot)-, RNA (Northern blot)- of eiwit (Western blot)-fragmenten.
DNA, RNA of eiwit wordt getransfereerd naar een membraan; waar vervolgens via DNA-hybridisatie (probes) of antilichamen (bij eiwitten) de fragmenten worden opgespoord