GROEPSELECTIE

   // EVOLUTIE  

°

Groepsselectie onder spinnen met een persoonlijkheid

Evolutiebiologen zijn nog steeds sceptisch over het al dan niet voorkomen van groepsselectie. Maar daar komt wellicht verandering in: experimenteel onderzoek toont nu mogelijk groepsselectie aan onder sociale spinnen.

Op 1 juli 1858 werden tijdens een samenkomst van de Linnean Society in Londen twee wetenschappelijke papers gecombineerd in een presentatie, getiteld On the tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Selection. De auteurs van de twee papers luisterden naar de namen Charles Darwin en Alfred Russel Wallace. Het is de eerste vermelding van natuurlijke selectie. Een jaar later, in 1859, publiceerde Darwin On the Origin of Species en introduceerde zo het concept bij het brede publiek.

Meer dan 150 jaar later wordt er nog steeds onderzoek gedaan naar de werking van natuurlijke selectie.

En één van de grote vragen is op welk niveau natuurlijke selectie inwerkt:

het gen, het individu of de groep?

°

Groepselectie
Vero Copner Wynne-Edwards deed beroep op groepsselectie om specifieke aanpassingen en gedragingen te verklaren.

Bij sommige vogelsoorten helpen jonge individuen met het grootbrengen van de volgende generatie in plaats van zelf voort te planten. Dit coöperatief broedgedrag kon volgens Wynne-Edwards verklaard worden door middel van groepsselectie.

De jonge individuen offeren hun eigen potentieel tot voortplanting op ten voordele van de groep. Maar in 1966 weerlegde George C. Williams het idee van groepselectie in zijn boek Adaptation and Natural Selection.

Hij argumenteerde dat de meeste aanpassingen verklaard kunnen worden vanuit het oogpunt van het gen.

Dit idee werd later gepopulariseerd door Richard Dawkins (zie The Selfish Gene).

Sindsdien heeft het concept van groepsselectie een negatieve bijklank.

Vele evolutiebiologen fronsen nog steeds de wenkbrauwen wanneer groepsselectie wordt aangewend om een bepaald kenmerk of gedrag te verklaren.

Spinnen
Maar Jonathan Pruitt (University of Pittsburgh) en Charles Goodnight (University of Vermont) komen nu met een studie die mogelijk groepsselectie in het wild aantoont.

Zij vergeleken het succes van kolonies van de sociale spin Anelosimus studiosus.

Afbeeldingen van Anelosimus studiosus  <—klik

  • Anelosimus studiosus is een spinnensoort in de taxonomische indeling van de kogelspinnen. Het dier behoort tot het geslacht Anelosimus.Wikipedia

°

Deze spinnen vertonen twee ‘persoonlijkheden’, een rustig en een agressief type.

De verhouding tussen deze persoonlijkheden in een kolonie bepaalt het succes van de groep.

In een ingenieus experiment werden artificiële kolonies samengesteld en geïntroduceerd in diverse omgevingen. Vervolgens volgden de onderzoekers het succes van de kolonies over twee generaties. Het bleek dat hoe meer een artificiële kolonie leek op een natuurlijke kolonie uit een bepaald gebied,(1)  hoe succesvoller deze kolonie was.

Men observeerde ook dat in bepaalde groepen de persoonlijkheidsverhouding van de artificiële kolonies over de tijd verschoof naar de natuurlijke situatie.

De groepen pasten zich dus aan aan de lokale omstandigheden. Deze aanpassing was weliswaar afhankelijk van de herkomst van de groepsleden. Kolonies die bestonden uit lokale spinnen benaderden steeds de natuurlijke situatie, terwijl kolonies met uitheemse individuen een persoonlijkheidsverhouding vertoonden die sterk leek op die in hun gebied van herkomst.

Een mooi voorbeeld van lokale adaptatie. Waarom sommige verhoudingen van persoonlijkheden het beter doen in bepaalde omgevingen dan andere is nog niet duidelijk.

Desalniettemin is dit misschien het eerste experimentele bewijs voor groepsselectie in het wild.

Spannend spinnenonderzoek dus.

°

 

Bronmateriaal:
Lewontin, C. (1970) The Units of Selection. Annual Review of Ecology and Systematics, 1: 1-18.
Pruitt, J.N. & Goodnight, C.J. (2014) Site-specific group selection drives locally adapted group compositions. Nature. Advanced Online Publication, 10.1038/nature13811.
Williams, G.C. (1966) Adaptation and Natural Selection. Princeton University Press.
Wynne-Edwards, V.C. (1962) Animal Dispersion in Relation to Social Behaviour. Edinburgh: Oliver & Boyd
De foto bovenaan dit artikel is gemaakt door Judy Gallagher.

 

LINKS 

http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature13811.html

http://www.simonsfoundation.org/quanta/20141002-in-social-spiders-evidence-that-groups-evolve/

Social spiders work together to capture a grasshopper.

Social spiders work together to capture a grasshopper.

 

Female Anelosimus studiosus spiders can have either aggressive or docile personalities.

Female Anelosimus studiosus spiders can have either aggressive or docile personalities.

Social-spider colonies are made up of “warrior” and “nanny” spiders. Different colonies have different ratios of warriors to nannies, depending on the environment. Researchers engineered new colonies, some of which retained their ancestral ratio, and some of which were altered so that spiders from warrior-heavy colonies were used to create nanny-heavy colonies, and vice versa. The new colonies were then placed in native and foreign environments. After a couple of generations, the altered colonies began to revert to their ancestral compositions, suggesting that natural selection shaped the composition of the group to be best suited to its native environment.

http://www.wired.com/2014/10/social-spider-group-evolution/

http://guardianlv.com/2014/10/group-selection-in-social-spiders/

 

https://www.google.be/webhp?sourceid=chrome-instant&rlz=1C1LDJZ_enBE499BE499&ion=1&espv=2&ie=UTF-8#q=Anelosimus+studiosus+group+selection&tbm=nws

http://www.biology.pitt.edu/person/jonathan-pruitt

 

°

(Jente Ottenburghs (1988) heeft sinds zijn Master Evolutie en Gedragsbiologie aan de Universiteit van Antwerpen een brede interesse voor evolutionaire biologie. Sinds mei 2012 werkt hij als PhD-student bij de Resource Ecology Group aan de Universiteit van Wageningen. Meer informatie over zijn onderzoek vindt u hier. En neem ook eens een kijkje op zijn blog waarop – hoe kan het ook anders – de evolutie eveneens centraal staat.)

Aziatische genen in Europese varkensAziatische genen in Europese varkensTijdens de industriële revolutie werden Aziatische varkens naar Europa gehaald om de lokale rassen te verbeteren. Onderzoek toont…
Broederliefde zorgt voor meer nakomelingenBroederliefde zorgt voor meer nakomelingenCompetitie tussen mannetjes heeft vaak kwalijke gevolgen voor vrouwtjes. Maar blijkbaar veranderen verwante fruitvliegen hun gedrag, broers zijn…

 

Reacties : 

  • dergelijke “evolutionarily stable strategy” situaties werden eerder al door Hamilton en Dawkins beschreven – geheel binnen het kader van klassieke natuurlijke selectie

(Jente)

In het originele artikel wordt geen poging gedaan om deze situatie in een ESS te beschrijven.
Ik denk dat hun definitie voor groepselectie ertoe leidt dat ze het kunnen aantonen:

“Group selection may be defined as selection caused by the differential exctinction or proliferation of groups”

De auteurs zijn weliswaar voorzichtig met hun uitspraken. Ze suggereren groepselectie (ik gebruik in de tekst ook “misschien” en “mogelijk”).

  • (1) Welk ‘bepaald’ gebied?
Advertenties

(NESTED Hierarchies ) GENESTE HIERARCHIEEEN

NOTES N  

*

http://evolution.berkeley.edu/evosite/lines/IVDhierarchies.shtml

°

Nested Hierarchies

Common ancestry is conspicuous.
Evolution predicts that living things will be related to one another in what scientists refer to as nested hierarchies—rather like nested boxes.

Groups of related organisms share suites of similar characteristics and the number of shared traits increases with relatedness.

This is indeed what we observe in the living world and in the fossil record and these relationships can be illustrated as shown below.

cladogram illustration showing nested hierarchies

In this phylogeny, snakes and lizards share a large number of traits as they are more closely related to one another than to the other animals represented.

The same can be said of crocodiles and birds, whales and camels, and humans and chimpanzees.

However, at a more inclusive level, snakes, lizards, birds, crocodiles, whales, camels, chimpanzees and humans all share some common traits.

Humans and chimpanzees are united by many shared inherited traits (at least )more then 90% of their DNA).

But at a more inclusive level of life’s hierarchy, we share a smaller set of inherited traits in common with all primates.

More inclusive still, we share traits in common with other mammals, other vertebrates, other animals.

At the most inclusive level, we sit alongside sponges, petunias, diatoms and bacteria in a very large “box” entitled: living organisms.

———————————————————————————————-

 

°  …… Alle leven volgt een patroon van geneste hierarchieen. Sets van definierende kenmerken binnen sets binnen sets.

  

°Een basale set is een set met algemene kenmerken.

°Een gederiveerde set is een set binnen de basale set, met specifieke kenmerken.

°Een tussenvorm( meestal een  —> ” mozaikvorm ” )  is een vorm met kenmerken die morfologisch intermediair zijn tussen de kenmerken van oudere fossielen binnen de basale set en nieuwere fossielen die voldoen aan een bepaalde gederiveerde set.  —>  En dat soort fossielen wordt gevonden, bij bosjes.

1.-Er is ondertussen een hele boom van tussenvormen die de onderlinge verhoudingen van moderne en uitgestorven levensvormen illustreren.

2.- phylogenetische  Stambomen ( bij eukaryoten  en vele  invertrbraten )  gebaseerd op de morfologische sequenties in fossielen ( …..en in extante organismen op  basis van vergelijkende anatomie en osteologie  ) komen goed overeen  met stambomen op grond van  sequenties afkomstig uit  (o.a) de vergelijkende  genomica … Bovendien blijken ook stambomen  gebaseerd op gedrag (ethologie) bij hogere (gewervelde)dieren  goed te correleren met de overige  stambomen  van diezelfde hogere gewervelden  

(zie verder onderaan een discussie over stambomen ) 

 

   :

schematische  indeling van de zogenaamde nested ( geneste )hierarchie      

Image:Biological classification L Pengo.svg

 

 

Network of  protokaryotic  life (communities )  manifestations  

Web-of-life-Doolittle

 

 

 

 

 

 

 

 

EVOLUTIE en TOEVAL

° °

Evolutie blijkt sterk afhankelijk van toevalligheden

Een vandaag de dag belangrijk eiwit in het menselijk lijf kon die belangrijke functie enkel verkrijgen doordat het twee heel onwaarschijnlijke mutaties opliep. Het laat zien hoe belangrijk spelingen van het lot binnen de evolutie zijn.
°
De onderzoekers bestudeerden proteïnen. Het ging om eiwitten die vandaag de dag een belangrijke rol spelen in het menselijk lichaam: ze doen dienst als cellulaire receptoren voor het stresshormoon cortisol.
°
De onderzoekers achterhaalden hoe het eiwit er 450 miljoen jaar geleden – toen het nog niet in staat was om cortisol te herkennen – uit moet hebben gezien. Vervolgens maakten ze dit 450 miljoen jaar oude eiwit na en bestudeerden de evolutie ervan.
°
Twee onwaarschijnlijke mutaties
°
Ze ontdekten zo dat het eiwit zoals we dat vandaag de dag kennen alleen kan bestaan dankzij twee heel onwaarschijnlijke mutaties. Die mutaties hadden geen invloed op het functioneren van het eiwit. Maar zonder die mutaties zou het eiwit de mutaties die deze later doormaakte en die het eiwit gevoelig maakten voor cortisol niet hebben getolereerd.
….Dit heel belangrijke eiwit bestaat enkel dankzij een speling van het lot….
stelt onderzoeker Joe Thornton.

Alleen deze twee

°

De onderzoekers keken of er wellicht andere mutaties waren die het eiwit gevoelig hadden kunnen maken voor cortisol. Maar ze konden die niet vinden. Alleen de twee zeer onwaarschijnlijke mutaties die het eiwit al in een vroeg stadium doormaakte, konden het eiwit klaarstomen voor de belangrijke taak die deze vandaag de dag heeft.

°

Algemeen toepasbaar ….

Als onze resultaten algemeen van toepassing zijn – en we denken dat ze dat zijn – dan is de wijze waarop veel systemen in ons lichaam werken het resultaat van heel onwaarschijnlijke toevallige gebeurtenissen die ver in ons evolutionaire verleden plaatsvonden.”

“ALS WE DE EVOLUTIONAIRE GESCHIEDENIS OVER ZOUDEN KUNNEN DOEN, ZOU HET LEVEN ER VRIJWEL ZEKER RADICAAL ANDERS UITZIEN DAN NU HET GEVAL IS” (1)

° Toeval speelt dus een enorm grote rol in de evolutie van het leven op aarde. ° Tijdens eerdere discussies omtrent evolutie en toeval, werd vaak gesproken over externe toevallige gebeurtenissen die het leven op aarde vorm hebben gegeven. Denk aan een komeetinslag, klimaatverandering of massa-extinctie.(2)

° Maar dit onderzoek toont aan dat toeval ook intern een rol speelt.

“Als we de evolutionaire geschiedenis over zouden kunnen doen, zou het leven er vrijwel zeker radicaal anders uitzien dan nu het geval is,”

voorspelt Thornton.

“Onvoorspelbare genetische gebeurtenissen openen constant deuren naar bepaalde evolutionaire uitkomsten en sluiten de deuren in de richting van andere evolutionaire uitkomsten en dat allemaal binnen de biochemische systemen van onze cellen.”

 

Joe Thornton, Ph.D.

 

° Bronmateriaal: Evolution depends on rare chance events, ‘molecular time travel’ experiments show” – University of Chicago Medical Center (via Sciencedaily.com)

June 18, 2014
Summary:
Historians can only speculate on what might have been, but a team of evolutionary biologists studying ancient proteins has turned speculation into experiment. They resurrected an ancient ancestor of an important human protein as it existed hundreds of millions of years ago and then used biochemical methods to generate and characterize a huge number of alternative histories that could have ensued from that ancient starting point.
Molecular structure (stock image).
Credit: © zhu difeng / Fotolia
°
(1) zie ook  :  J.S. GOULD  : ( replaying the tape of evolution  ) http://whyevolutionistrue.wordpress.com/2011/09/11/stephen-jay-gould/ http://www.peripatus.gen.nz/Evolution/RepGou.html   http://www.arn.org/docs/orpages/or131/wise.htm Truly a Wonderful Life – Review of Stephen Jay Gould’s Wonderful Life. Origins Research 13:1. Wise, Kurt P.

“…..Though he never explicitly mentions chaos theory, Stephen Jay Gould has introduced it into what he calls the gentle field of paleontology–i.e. the study of fossils. His latest book, Wonderful Life, is primarily a discourse on what Gould calls the contingency of evolutionary history. If the evolutionary “tape” were played again, there is no way to predict what would happen–and no reason to expect that humans would have existed. In other words, chaos theory may also fit evolutionary history, just as it does cloud growth, planetary orbits, and scores of other events of an apparently orderly nature ….”

° How repeatable is evolutionary history? http://www.sciencedaily.com/releases/2014/06/140623225009.htm ‘Weakness’ in clover genome biases species to evolve same trait

The clover genus Trifolium is surprisingly varied. Of the clover species shown here, T. repens (bottom right), commonly known as white clover, and T. isthmocarpum (middle left), a salt-tolerant species known as Moroccan clover, include both cyanide-producing and cyanide-less plants, although some of the other species have one of the two genes needed to synthesize cyanide.
Credit: Ken Olsen

June 23, 2014 Washington University in St. Louis Summary: Some clover species have two forms, one of which releases cyanide to discourage nibbling by snails and insects and the other of which does not. A scientist found that this ‘polymorphism’ has evolved independently in six different species of clover, each time by the wholesale deletion of a gene. The clover species are in a sense predisposed to develop this trait, suggesting that evolution is not entirely free form but instead bumps up against constraints.

°

(2) = “contingency “gebeurtenissen van -en door S J  Gould  vaak als  (filosofisch gestoeld ) tegenargument  gebruikt bij sommige beweringen van theistische evolutionisten ( bijvoorbeeld gebruikt tegen enkele opvattingen van  de Engelse  paleontoloog   Simon Conway Morris,over de onvermijdelijkheid van bepaalde evolutionaire uitkomsten–> met name het verschijnen van  intelligente “godsvrezende  en godsvererende ” wezens  als  finaal doel = de “mens ” (of  een of andere   convergente   mensachtige  intelligentie )  als ultieme uitkomst  van de evolutie processen  )en

als waarschuwing  tegen de  opvatting dat natuurlijke  selectie ALLEEN , het ENIGE en EXCLUSIEVE   evolutiemechanisme  zou zijn  (=–>  “adaptionistische verhaaltjes “–> evolutionaire psychologie  )

LENSKI  EXPERIMENT 
http://scienceblogs.com/notrocketscience/2008/06/02/history-restricts-and-guides-the-evolution-of-innovations/
______________________________________________________________

***  Evolutie  en creationisme  :

°

Kansen en kansberekening   //

°

What’s Wrong With Creationist Probability? Sept. 3, 2006 By JOHN ALLEN PAULOS http://abcnews.go.com/Technology/story?id=2384584

°   ANTI-CREATO    ;    ° Teologie argument en causaal verband <— TOEVAL ID en THEISTISCHE EVOLUTIONISTEN.docx (101.9 KB) <–

°

(Uit de kommentaren  )

°

1.- de kans dat ik u ooit tegenkom is klein, de kans dat ik u nooit tegenkom is erg groot.(maar nooit  per definitie =0  (en  bij voldoende tijd  en turbulentie  ) )

°

2.- Mensen die dingen( en ) /open -ended  processen  niet kunnen  beredeneren noemen deze dingen (resultaten van die processen  )toeval of goddelijk.

°

***  Cosmologie en fysica    

°

* QUANTUM “SCHOMMELINGEN” (FLUCTATIES )  en QUANTUM-KWAK 

° zie ook : Contingency : 

° (Evolutie )

http://rationalwiki.org/wiki/Historical_contingency

http://www.stephenjaygould.org/library/shermer_contingency.html

https://notes.utk.edu/bio/greenberg.nsf/6617131020461f6585256d24005739db/0a0954eb28d501f385256f040057cef9?

 

OpenDocument

°

*(filosofie )

http://nl.wikipedia.org/wiki/Contingentie

°

* (organisatietheorie ) http://en.wikipedia.org/wiki/Contingency_theory http://nl.wikipedia.org/wiki/Contingentietheorie

 

°

https://openaccess.leidenuniv.nl/bitstream/handle/1887/19695/afscheidsrede%20Gittenberger.pdf?sequence=2

°

http://evolutie.blog.com/2006/08/09/orkanen-toeval-of-ontwerp/

°

TOEVAL EN NOODZAAK

 

http://blog.oup.com/2010/02/evolution/

http://www.nytimes.com/2003/11/11/science/is-evolution-truly-random.html

Far from random, evolution follows a predictable genetic pattern, Princeton researchers find

Posted October 25, 2012;
http://www.princeton.edu/main/news/archive/S35/06/74S40/

http://www.scientificamerican.com/article/predictable-evolution-trumps-randomness-of-mutations/

http://animals.about.com/od/evolution/ss/evolution_6.htm

°

http://korthof.blogspot.be/2014/07/noodzaak-versus-toeval-in-de-evolutie.html

 

Noodzaak versus toeval in de evolutie. Vier wetenschappers die noodzakelijkheid verdedigen

(1) Christian de Duve

Iedereen heeft wel eens gehoord van het ‘Rerun the tape of life’ arugment. Het zegt dat als je het evolutieproces opnieuw zou laten beginnen vanaf het ontstaan van het leven, er dan heel andere planten en dieren zouden ontstaan. En dan zouden wij er misschien niet geweest zijn. Het is een argument voor de belangrijke of zelfs overheersende rol van het toeval [1] in de loop van evolutie. Het argument is afkomstig van de paleontoloog en populair-wetenschappelijk auteur Steven J. Gould die het uiteenzette in Wonderful Life (1989). De meeste biologen zijn het met hem eens dat het toeval een grote rol speelt

[2]. Het wordt ‘historical contingency’ genoemd. De geschiedenis van het leven op aarde zit vol van die historical contingencies. Maar toch is er een klein aantal wetenschappers dat ‘noodzakelijkheid’ verdedigt. De eerste is: (1) Christian de Duve (zie mijn blog Is Christian de Duve een deïstische fine-tuner? Het toevals evangelie versus noodzakelijkheids evangelie). Maar daarna ontdekte ik ook nog de biofysicus Harold Morowitz en de van origine Nederlandse paleontoloog Geerat Vermeij. Tenslotte is er nog de paleontoloog Simon Conway Morris.(2) Harold Morowitz

(2) Harold Morowitz

“Harold Morowitz has long been a vigorous proponent of the view that life on earth emerged deterministically from the laws of chemistry and physics, and so believes it highly probable that life exists widely in the universe”. (wikipedia)

Een ieder die serieus geïnteresseerd is in het thema toeval versus onvermijdelijkheid in evolutie, kan ik zijn publicaties:

  • A Theory of Biochemical Organization, Metabolic Pathways, and Evolution‘ (1999)
  • Energy flow and the organization of life‘ (2006)

aanbevelen (beide pdfs gratis te downloaden). Het eerste is pittig, en geeft een diepgravend overzicht over wat onvermijdelijkheid, determinisme in de biologie inhouden, en hoe hij denkt dat je de toevallige en onvermijdelijke eigenschappen van het leven kunt onderscheiden. Morowitz zegt dat het leven zowel onvermijdelijke als toevallige eigenschappen heeft. Zeer belangrijk om vooruitgang te boeken in de controverse. Het tweede artikel is iets korter (10 pag).
Morowitz heeft het (extreme?) standpunt dat het onvermijdelijk is dat het leven op aarde ontstond, en dat tenminste de eerste stappen hetzelfde zullen zijn op iedere vergelijkbare planeet en dat biofysici in staat zouden moeten zijn die eerste stappen logisch af te leiden uit de basisbeginselen van schei- en natuurkunde, samen met de begincondities van de aarde. Zijn vertrekpunt is dat er chemische energie aanwezig was op de vroege aarde, en het metabolisme van de eerste levensvormen te begrijpen is als een logische manier om die opgehoopte energie af te voeren. Dus niet: organismen ‘zoeken’ energiebronnen, maar energie kan goed afgevoerd worden door het metabolisme van levensvormen. Het eerste metabolisch systeem werd als het ware tot leven ‘gedwongen’. Dat metabolisme is het kernmetabolisme of core metabolism dat in de loop van de evolutie hetzelfde is gebleven. Ondanks dat het totale metabolisme enorm is uitgebreid in de loop van de evolutie, is de kern nog steeds terug te vinden in het huidige leven. Dat core metabolism is universeel. [Dat zou dus ook op aarde-achtige planeten voor moeten komen!].

Morowitz’ analyse zegt niet veel over morfologische evolutie en biodiversiteit. Hoe verder je komt in de loop van de evolutie, zegt hij, des te meer wordt de rol van het toeval groter (‘frozen accidents‘) [3]. Zaken die anders hadden gekund.

(3) Geerat Vermeij

(3) Geerat Vermeij
©Lifeboat Foundation

Het bijzondere van Geerat Vermeij is dat hij geen fysicus of chemicus is, maar paleontoloog en toch plaatst hij kritische kanttekeningen bij ‘historical contingency’ [4]. Volgens Vermeij bestaat ‘historical contingency’ uit unieke evolutionaire uitvindigen. Maar er zijn maar weinig echt unieke uitvindingen. De meeste zogenaamde unieke uitvindingen zijn slechts schijnbaar uniek omdat ze significant langer geleden hebben plaatsgevonden (langer dan 500 miljoen of 1 miljard jaar geleden), waardoor veel fossiele informatie verloren is gegaan. We hebben dus incomplete data. Daardoor lijkt het alsof een evolutionaire uitvinding uniek is. Dit onderbouwt hij met uitgebreide data. Een belangrijke maar relatief onbekende bijdrage aan het debat toeval – noodzakelijkheid. Tenminste, ik kende deze publicatie nog niet.

(4) Simon Conway Morris
©Univ. Cambridge

(4) Simon Conway Morris
 
Simon Conway Morris werd vooral bekend door het boek:Life’s Solution. Inevitable Humans in a Lonely Universe(2003) dat die zich expliciet richt tegen Gould’s rerun the tape of life argument. Hij wijst er op dat convergentie veel vaker voor komt dan er in de officiële evolutie handboeken vermeld staat. Zijn boek documenteert dat een overvloed van voorbeelden. Daarom verdient het om apart gereviewed te worden. Voorbeelden: onafhankelijke ontwikkeling van visuele systemen, reuksystemen, echolocatie, intelligentie. Actief vliegen is onafhankelijk ‘uitgevonden’ bij vogels, insecten en vleermuizen. Simon Conway Morris wordt vooral vaak aangehaald door creationisten omdat hij de overheersende rol van het toeval in evolutie bestrijdt. Het ‘toeval’ wil dat Conway Morris christelijk is. Het laatste hoofdstuk heet: ‘Towards a theology of evolution’. Jammer, want nu heeft men de neiging om zijn hele boek te zien als een poging zijn christelijk standpunt te onderbouwen. En daardoor lijkt het dat dit boek genegeerd wordt door de meerderheid van wetenschappers. Zo noemen bijvoorbeeld Bergstrom en Dugatkin in hun studieboek Evolution (2012) wel een ouder wetenschappelijk boek van hem, maar niet Life’s Solution (te ‘populair’ om genoemd te worden? of bias?).

NB: er is nu een alternatief: George R. McGhee (2011) ‘Convergent Evolution: Limited Forms Most Beautiful’. (is ook paleontoloog) [11 jul 2014]

De vier wetenschappers Christian de Duve, Harold Morowitz, Geerat Vermeij en
Simon Conway Morris geven ieder op verschillende manieren tegenwicht tegen de standaardopvatting die zo vanzelfsprekend is dat het niet eens meer opvalt. Zelfs Carl Sagan in zijn klassieke bestseller Cosmos (1980) schrijft:

Carl Sagan: Cosmos,
paperback 2013

“Were the Earth to be started over again with all its physical features identical, it is extremely unlikely that anything closely resembling a human being would ever emerge. There is a powerful random character to the evolutionary proces. A cosmic ray striking a different gene, producing a different mutation, can have small consequences early but profound consequences late. Happenstance may play a powerful role in biology, as it does in history. …” (p. 297 en verder, Cosmos, paperback uitgave 2013 )

Wie er gelijk heeft weet ik (nog) niet, maar dankzij deze vier wetenschappers ben ik er achter gekomen dat het standaardbeeld van de overheersende rol van het toeval in evolutie helemaal niet zo vanzelfsprekend is. Vanzelfsprekendheid is nooit goed. Kritiek is wel degelijk mogelijk. Er bestaat een alternatief dat onderzocht moet worden wil je een genuanceerd beeld vormen over de rol van toeval in evolutie.

Noten

  1. ‘Toeval’ zoals biologen dat begrip gebruiken! Fysici gebruiken ‘toeval’ in een andere betekenis. Dit verhaal gaat over biologie.
  2. Natuurlijk niet zoals het creationistisch misverstand over evolutie wil dat het leven door toeval ontstaat of dat genen, eiwitten of organismen door toeval ontstaan. Mutaties zijn toevallig en natuurlijke selectie is niet toeval.
  3. “At the core, the behavior tends to be governed by deterministic physical chemistry, and, as one moves out from the core, frozen accidents play an ever-increasing role in the historical unfolding of biology. As has been noted, biology stands between physics and history. “
  4. Geerat J. Vermeij (2006) ‘Historical contingency and the purported uniqueness of evolutionary innovations‘, PNAS, 2006. (gratis)

°

 

 

Kritiek op Conway Morriss : 

http://whyevolutionistrue.wordpress.com/2009/02/14/simon-conway-morris-becomes-a-creationist/

 

°

 

INTEELT en dergelijke

°

INHOUD GLOS i /J

°

Zie ook    Archief document  

INTEELT    <— (klik )

met o.a.

—> Hyenawijfjes  verhinderen  inteelt  

—> Pisluchtje  bij muizen  

—> Vleermuizen doen het met de schoonfamilie ( maar dat is niet noodzakelijk  inteelt sensu strictu ) 

 

________________________________________________________________

 

 

Trefwoorden 

(zie ook archief document hierboven )

Inteelt   //   Kruising van verwanten. De nauwste vorm van inteelt is zelfbevruchting  // kruisingen  tussen zuster en broer, moeder en zoon, dochter en vader  —>   Neven en nichten   ( de (oude) vlaamse volksmond zei = “kozijns en nichte vrijen allichte “).

° Inteelt leidt tot het homozygoot worden van ( veel  ) eigenschappen.—> Daaronder zijn er vooral een hoop ongustige(–> zeg maar schadelijke )  die  hun  doorslaggevende  invloed laten gelden  in het  filtreringsproces dat de evolutie is  …. 

° Inteelt : verwantschapsteelt die behalve de goede ook de (eventuele) slechte eigenschappen in de bloedlijnen versterkt

°http://nl.wikipedia.org/wiki/Inteelt                                                                                                                                      Inteelt is een wetenschappelijk begrip dat inhoudt het kruisen binnen een soort, ondersoort of ras van nauw aan elkaar verwante individuen. De verwantschap tussen beide ouders is hierbij groter dan de gemiddeld vastgestelde inteeltcoëfficiënt van de totale populatie.

-Bij het fokken van gedomesticeerde dieren wordt inteelt gebruikt om gewenste uiterlijke of karaktereigenschappen te behouden en te versterken. Wanneer in een dier een eigenschap als wenselijk beschouwd wordt, wordt vaak een dier dat deze eigenschap toont met een naaste verwant (vader/moeder broer/zus) gekruist om in de nakomelingen deze eigenschap terug te zien

* maar dat soort  van “behouden  van gewenste eigenschappen “binnen een groep  zeer  nauwe verwanten ,  kan ook gepaard gaan met een boel  ongewenste  effecten die eveneens kunnen worden doorgegeven ….Op deze wijze verkregen  “rassen ” zijn dikwijls behept met allerlei verhoogde risico’s op ziekten  en verminderde robuustheid   … ze zullen derhalve meer zorg en veeartsenij  goed kunnen gebruiken   ….

°

 

°

zelfbevruchting  //Autogamie

-Samensmelting van een mannelijke gameet met een vrouwelijke gameet van hetzelfde individu . 

-tot bevruchting leidende bestuiving van een bloem door stuifmeel van hetzelfde plante-exemplaar (tegengestelde van kruisbestuiving)

 

Nota =

Zelfbevruchting mag men niet verwarren met  de  sexuele  capriolen  van  hermafrodieten  ( slakken bijvoorbeeld )

Hermafrodieten  bevruchten hun partner ( en soms veranderen ze  van “gender” gedurende hun levensloop ) …niet zichzelf ….

 

‘De wijngaardslak is zoals alle slakken hermafrodiet ofwel tweeslachtig en gedurende de voortplantingstijd rond mei tot juli vindt de paring plaats. Hierbij is één dier passief, en gedraagt zich als vrouwtje, de andere is actief en brengt zaadcellen in het lichaam van de partner. Voorafgaand aan de paring schiet de ene slak een kalk-achtige liefdespijl in de andere slak, hierbij worden hormonen afgegeven waardoor de ontvanger gestimuleerd wordt te paren. Er wordt vermoed dat het afschieten van deze uit calciumcarbonaat bestaande pijl ook nog andere doelen dient, zo kan het zijn dat de ‘vaderslak’ de aanstaande moeder wat extra calcium geeft voor de ontwikkeling van de eitjes. De eigenlijke paring gebeurt door de penis met de vagina te verbinden, waarna de spermatozoïden in een spermatofoor worden afgegeven. Nadat de ene slak bevrucht is, worden de rollen vaak omgedraaid en vindt dus wederzijdse bevruchting plaats. De eitjes worden in kleine holletjes afgezet en komen na enkele weken uit. Het duurt 3 tot 4 jaar eer de jongen volwassen zijn, de maximale levensduur is ongeveer 6 jaar.’ (Wikipedia )

http://www.kennislink.nl/publicaties/slakkenseks-geeft-nieuw-inzicht-in-evolutie

 

°

Beetje incest goed voor nageslacht  ?

Meer kleinkinderen met je achter-achter-achterneef

 7 februari 2008

Inteelt is taboe, en niet voor niets: kindertjes van een broer en zus hebben vaak genetische afwijkingen. Maar met familie die wat verder uit elkaar ligt, is het prima kinderen maken, blijkt uit oude IJslandse familiegegevens. Achter-achter-achterneven en -nichten krijgen de meeste kleinkinderen van iedereen

°

Niet met broer of zus, maar anders: waarom niet?

Niet met broer of zus … maar anders ?

°

Iedereen heeft hier en daar wel een paar zeldzame, zwakke genen, en dat hoeft helemaal niet erg te zijn                          –

Omdat je ieder gen dubbel hebt, eentje van je vader en eentje van je moeder, heb je meestal ook de compenserende normale versie in huis.Maar die reserve-genen-truc werkt niet meer als je ouders broer en zus zijn: er is een grote kans dat die beide hetzelfde zwakke gen geërfd hebben, en dat jij daardoor twee zwakke genen krijgt.
Inteelt leidt vaak tot erfelijke afwijkingen, zoals een tragere groei of onvruchtbaarheid.
Vrijwel alle culturen kennen dan ook een zwaar taboe op incest: seks tussen familieleden.
Toch moet je het ook weer niet overdrijven, blijkt uit een onderzoek van onderzoekers van de universiteit van IJsland en het genetica-instituut deCODE, beide in Reykjavik.
IJsland heeft een genetisch en cultureel zeer homogene bevolking van ongeveer 313 duizend mannen en vrouwen, die vrijwel allemaal afstammen van Noren die in de vroege middeleeuwen emigreerden.
Bovendien worden de familierelaties al eeuwen prima bijgehouden op het zeer geletterde eiland.
Het bedrijf deCODE is speciaal opgericht om deze twee voordelen te gebruiken bij genetisch onderzoek naar erfelijke afwijkingen en eigenschappen.
De onderzoekers onderzochten in hun database 160.811 huwelijken over de periode 1800 tot 1965, en gingen na in hoeverre bruid en bruidegom verwant waren.
IJsland, land van watervallen, gletschers, vikingen en keurig bijgehouden bevolkingsregisters
Ijsland , watervallen , geisers , vulkanisme , sneeuw en ijs …vikings 
°
In het niet al te dichtbevolkte IJsland ben je al gauw in de verte familie van elkaar.
Vervolgens turfden ze hoeveel kinderen en kleinkinderen er uit die huwelijken voortkwamen, en hoe oud die werden.
Het resultaat verbaasde.
Weliswaar bleek inteelt een probleem: stellen die achterneef en -nicht waren (dus verwant in de derde generatie), kregen kinderen die minder lang leefden dan gemiddeld. ok waren er vruchtbaarheidsproblemen, want ze kregen ook minder kleinkinderen dan stellen die verder verwant waren, in de vierde of vijfde generatie.
Maar toch leek er ook een voordeel te zitten aan trouwen binnen de familie.
Hoe sterker de ouders verwant waren, hoe meer kinderen ze hadden. En verwanten in de de vierde of vijfde generatie (achter-achterneven en nichten, of nog een ‘achter’ erbij) mogen dan meer kleinkinderen hebben dan de bijna-incestueuze achterneef-nicht-stellen, die laatsten waren nog altijd kleinkinderrijker dan partners die heel ver of helemaal niet verwant zijn.
Vikingen maakten Europa onveilig, maar stichtten ook de eerste Europese democratie sinds jaren op IJsland
Vikingen maakten ooit europa onveilig, maar stichten tevens de eerste democratie … op ijsland 
°
Het is mogelijk  dat sociale en culturele effecten een rol spelen.
Bij huwelijken binnen een uitgebreide familie hoeft het familiebezit niet opgedeeld te worden, wat een materiële voorsprong geeft. Maar de effecten blijven vergelijkbaar over zeven periodes van vijfentwintig jaar.
In die tijd veranderde de IJslandse maatschappij van een gesloten boerenmaatschappij naar een moderne, rijke westerse maatschappij, met heel andere gewoontes in het uitzoeken van partners en het krijgen van kinderen. Mogelijk telt het dubbele-zwakke-genen-effect toch niet zo zwaar zolang het niet om broers en zussen gaat, stellen de onderzoekers, en is er ook een genetisch voordeel aan verwantschap.
Het erfelijk materiaal van verwanten zou compatibeler kunnen zijn dan dat van vreemden, bijvoorbeeld doordat hele groepen van genen op elkaar afgestemd zijn. Als die gematcht worden met wildvreemde genen, gaat die afstemming verloren.
Als er inderdaad een biologische basis is voor het incestvoordeel, voorspellen de onderzoekers, zal de opkomst van de moderne maatschappij, waarin partners gemiddeld veel minder verwant zijn dan vroeger, alleen daarom al bijdragen aan het dalende kindertal.
°
Bruno van Wayenburg Agnar Helgason et al: ‘An Association Between the Kinship and Fertility of Human Couples’, Science, 8 februari 2008

°

 

 

Zeldzame hersenafwijking door mutatie

Inteelt zorgt 16 generaties later voor gezondheidsproblemen

24 april 2014

Huwelijken binnen families of kleine bevolkingsgroepen kunnen ernstige gevolgen hebben.

Zoom

Het gen dat een zeldzame hersenaandoening veroorzaakt is geïdentificeerd. De aandoening wordt veroorzaakt door één mutatie die ongeveer 16 generaties terug is ontstaan in een enkel individu ergens in Turkije. De aandoening uit zich in verkleinde hersengebieden zoals de hersenstam en het cerebellum. Dit is terug te zien in symptomen zoals geestelijke beperkingen, beroertes en vertraagde ontwikkeling van de motoriek.

Het erven van een schadelijke mutaties is op zich niet heel zeldzaam.

Maar omdat een mens van ieder gen twee varianten heeft, een van de vader en een van de moeder, leidt dit maar zelden tot aandoeningen(heterozygoot ) .

Wanneer er echter veel binnen een familie of kleine bevolkingsgroep wordt getrouwd, kan dit wel voor problemen zorgen. Dan is er een veel grotere kans dat een persoon het gemuteerde gen van zowel de vader als de moeder erft.(homozygoot )

Dat leidt tot zeldzame aandoeningen die zonder inteelt niet hadden bestaan.

Dit is ook de manier waarop deze aandoening, die door een mutatie in het CLP1 gen wordt veroorzaakt, is ontstaan.

16 Generaties geleden heeft de verandering in het gen zich spontaan voorgedaan in één persoon.

Amerikaans onderzoek aan de universiteit Yale heeft precies dezelfde mutatie teruggevonden in kinderen met de zeldzame aandoening in negen verschillende Turkse families.

Dit is een voorbeeld dat laat zien hoe belangrijk variatie in een populatie is en wat de gevolgen zijn van inteelt. De kans op gezonde kleinkinderen is een stukje groter als je je kinderen de wijde wereld in stuurt.

 

___________________________________________________________________________________

GESLACHTSGEBONDEN    DEFECTEN

die  bij   inteelt  ook grotere kansen krijgen  om op te duiken  in het nageslachts

voorbeeld  :   HEMOFILIE  (bij inteelt zijn zowel  de  vader als  de  moeder in het bezit van  minstens een  X chromosoom dat drager is van het defect // dit  defecte  allel   is  een recessief   allel  ) 

http://www.mijnhemofilie.be/nl/hemofilie/hemofilie-en-erfelijkheid/

Hemofilie en erfelijkheid | Mijn hemofilie

In de meeste gevallen worden mensen geen hemofiliepatiënt maar worden ze met hemofilie geboren. Hemofilie is een erfelijke ziekte die van ouder op kind wordt overdragen.

Ons lichaam bestaat uit minuscule cellen. Deze cellen bevatten elk 46 chromosomen gegroepeerd in 23 paren die talrijke kenmerken bepalen zoals de kleur van de ogen, de haarkleur, enz. Een van deze paren bepaalt het geslacht: meisje of jongen. Dit zijn de X- en Y-chromosomen.

Mannen hebben een X-chromosoom en een Y-chromosoom

Mannen hebben een X-chromosoom
en een Y-chromosoom

Femme avec un chromosome X porteur

Een vrouw heeft twee X-chromosomen.
Als een van deze chromosomen het hemofilie-gen draagt, kan het andere chromosoom dit compenseren. Deze vrouw zal dus “draagster” zijn maar geen hemofiliepatiënte.

Hemofilie is een ‘geslachtsgebonden’ stoornis. Het hemofilie-gen bevindt zich dus op één van de geslachtschromosomen, het X-chromosoom.

Vrouwen hebben twee X-chromosomen

Vrouwen hebben
twee X-chromosomen

Homme avec un chromosome X qui a le gêne

Een man heeft slechts één X-chromosoom.
Als dit chromosoom drager is van het hemofilie-gen, dan zal de man aan hemofilie lijden.

Wat gebeurt er met de volgende generatie?

Vader heeft hemofilie

Un père porteur fait deux filles conductrices sur deux

Moeder is draagster

Une mère conductrice fait un garçon sur deux hémophile et une fille sur deux conductriceZowel vader als moeder kan hemofilie overdragen. Een vader met hemofilie zal dochters krijgen die draagsters zijn; de overdracht zal dus niet direct ‘zichtbaar’ zijn (de dochters zullen geen klinische effecten vertonen). Een moeder die draagster is heeft één kans op twee om een gezonde dochter te krijgen, en ook één kans op twee om een zoon zonder hemofilie te krijgen.

Het type en de ernst van de hemofilie worden beide erfelijk bepaald. Als een moeder het hemofilie A gen heeft, zal haar zoon aan hemofilie A lijden en niet aan hemofilie B. Als er in de familie milde hemofilie voorkomt, dan kan dit type van milde hemofilie worden overgedragen op toekomstige generaties.

 

 

schematische voorstelling van de erfelijke overdracht van hemofilie

 

°

Ter overweging ; 

1)Wat gebeurt er als vader (hemofiliepatient ) en moeder ( draagster)   beiden   in het bezit  zijn  van  het  hemofilie allel ? ( =    bij inteelt neemt de kans op een dergelijk schema   dus toe   ?  )

Zonen van mannen met hemofilie erven hun X chromosoom van hun moeder ..  dergelijke  zonen zijn vrij van hemofilie , tenzij hun moeder draagster is want dan hebben ze  opnieuw  één kans op twee op hemofilie .

 

°

* Merk op    :  

Naast deze overgeerfde  familiale vormen  kan hemofilie in ongeveer 30 procent van de gevallen voorkomen door een nieuwe toevallige genetische mutatie in het FVIII gen, die er dan verder voor zorgt dat hemofilie overerfbaar is binnen de familie.

 http://www.levenmethemofilie.be/nl/hemofilie/oorzaak-van-hemofilie/een-kwestie-van-erfelijkheid

http://www.ahvh.be/nl/informatie/draagsters-van-hemofilie/erfelijkheid/122-hemofilie-erfelijkheid-overdracht

https://www.uzleuven.be/hemofiliecentrum/hemofilie-a

 

°

Aap houdt foute sekspartner op afstand met zijn ‘looks’

apenkop

De apen op de afbeelding hierboven behoren tot hetzelfde geslacht. Toch zien hun gezichten er heel anders uit. Waarom? Zo voorkomen de apen dat ze ‘per abuis’ seks hebben met een aap die niet tot hun soort behoort.

 

“Evolutie leidt tot aanpassingen die dieren in staat stellen om in een bepaalde omgeving te gedijen,” vertelt onderzoeker James Higham. “En na verloop van tijd leiden die aanpassingen tot de evolutie van een nieuwe soort.” Zo ontstonden ook de verschillende soorten die passen binnen het geslacht van de echte meerkatten. Het geslacht telt maar liefst 26 soorten. Die soorten zijn niet alleen nauw aan elkaar verwant. Maar wonen ook nog eens vrij dicht bij elkaar in de buurt. Sterker nog: ze lopen elkaar vaak tegen het lijf en reizen, eten en slapen zelfs samen. “Een belangrijke vraag is: welk mechanisme zorgt ervoor dat nauw aan elkaar verwante soorten wiens leefgebieden overlappen geen seks met elkaar hebben en dus aparte soorten blijven?”

FOUTE SEKSPARTNER
Het is evolutionair gezien bijzonder onhandig als een echte meerkat paart met een echte meerkat die tot een andere soort behoort. Het kan namelijk resulteren in nageslacht dat onvruchtbaar is.

De gezichten
In de jaren tachtig suggereerde een zoöloog dat de totaal verschillende gezichten van de verschillende soorten apen voorkwamen dat ze ‘per abuis’ paarden met een aap die niet tot hun eigen soort behoorde. Hij kon dat echter niet bewijzen. Onderzoekers pakten de hypothese van de zoöloog nu weer uit de kast en keken of ze er met behulp van moderne technologieën misschien wel bewijs voor konden vinden.

Foto’s

Ze fotografeerden verschillende soorten echte meerkatten in verschillende gebieden en over een periode van achttien maanden. Vervolgens gebruikten ze speciale computerprogramma’s om de overeenkomsten en verschillen tussen de gezichten op te sporen. Ze ontdekten dat de gezichten van de verschillende soorten echt sterk verschilden. De verschillen waren het grootst tussen soorten die hetzelfde leefgebied deelden en dus de grootste kans hadden om ‘per abuis’ met de verkeerde soort te paren.

“Deze resultaten suggereren sterk dat het bijzondere uiterlijk van deze apen te wijten is aan selectie van visuele signalen die seks met andere soorten ontmoedigen,” stelt onderzoeker William Allen. “Dit is misschien wel het sterkste bewijs dat visuele signalen een rol spelen in het belangrijke evolutionaire proces dat leidt tot de vorming en totstandkoming van soorten en het is met name opwindend dat we dit ontdekt hebben in een deel van onze eigen geslachtslijn.”

°

Bronmateriaal:
To Avoid ” 
De foto’s bovenaan dit artikel zijn gemaakt door William Allen / Nature Communications.

 

°

Inteelt , SOORTVORMING  en GENETISCHE  VARIATIE 

 

—> Inteelt geeft wel variaties, maar  eigenlijk zijn het vaak negatieve mutaties, die versterkt worden doorgegeven  , waardoor de populatie waarin ze voorkomen  uiteindelijk ook uitsterft.

Het probleem met (vruchtbare ) inteelt  is namelijk dat niet alleen de goede eigenschappen worden doorgegeven maar de invloed  van  slechte eigenschappen ook gaat worden uitvergroot.
Op langere termijn is er dan geen genetische diversiteit meer en sterft de soort dus uit.
Het is daarom een must dat verschillende groepen van het zelfde geslacht aan genetische uitwisseling doen, waarbij de ene groep (populatie) dus gaat paren met de andere groep(populatie ) .

Daarom zien we ook vaak, dat bv mannetjes de groep verlaten om dan een andere groep over te nemen, op die manier is die genetische diversiteit gegarandeerd.

Maar, en dat is iets wat velen ook vergeten, als twee groepen van de zelfde soort uiterlijk verschillen gaan vertonen door evolutie  -of zelfs  ( meestal neutrale)  mutaties,(wat dus de mogelijkheid geeft duplicaties te gaan  gebruiken als nieuw genetisch  evolutie materiaal )  zoals in het geval van de meerkatten mogelijk is gebeurd  , dan spreken we over subgroepen( subspecies / rassen )  binnen  dezelfde soorten   en uiteindelijk ook  binnen  hetzelfde geslacht.

°
Maar,-en nu komt het- verschillende subgroepen kunnen en zullen trouwens ook, omdat ze genetisch niet zo verschillend zijn, met elkaar paren en dan spreken we over hybriden binnen het zelfde geslacht. ( = eigenlijk  zijn dat  soortbastaarden  want beide partners behoren tot twee verschillende soorten  binnen weliswaar hetzelfde geslacht  ) waarvan sommigen in de F1  toch vruchtbaar blijken en/of  minstens een paar genen kunnen uitwisselen  die in de oorspronkelijke twee populaties niet voorkwamen ( Heidelberger /  neanderthaler / Denisova / archaic homo sapiens  binnen het geslacht homo )

soortbastaarden  <–Doc archief

Op die manier word die genetische diversiteit nog groter ( en /of vergroot de kans  op  het verwerven van gunstige vreemde “subgroepvreemde “- genen  maar  vergroot de kans  op bepaalde genetische ziekten  of  genetische  voorbeschiktheid (1) )en is dus  een (water)kans(dus hoe klein ook niettemin groter  dan zonder hybridisatie )  op nieuwe subgroepen binnen hetzelfde taxon

Na verloop van tijd-verschillende (vele) generaties worden de verschillen tussen de eerste en de laatste subgroep zo groot, dat we uiteindelijk kunnen spreken van een geheel nieuwe soort binnen het taxon en uiteindelijk ook een   geslacht( genus )  ondanks het feit dat ze genetisch nog aan elkaar verwant zijn.(= behorend tot hetzelfde taxon )

Om iets heel lang kort te houden, hybriden spelen  een rol in het evolutie proces.
Het evolutie proces gaat te traag om die verscheidenheid te verklaren, met de invoeging van hybriden gaat het veel sneller.

(1) zelf bij rasvermengingen binnen dezelfde soort loert dat gevaar sowieso al   :

http://www.ntvg.nl/artikelen/nieuws/sikkelcelanemie-onder-blanke-mensen-met-verborgen-zwarte-voorouders

 

 

 

Heterosomen of geslachts chromosomen

°

 zie onder GENETICA     

°

BEPALING vh begrip    &  Geslachtsbepaling  SYSTEMEN http://nl.wikipedia.org/wiki/Geslachtschromosoom   Een geslachtschromosoom of heterosoom is een chromosoom dat voor de bepaling van de sekse zorgt. Hiervoor bestaan bij verschillende groepen organismen verschillende systemen.  :

________________________________________________________________________________________________ –> XY  systeem  

Genen die bepalen of u een jongetje of een meisje bent, ontstonden 180 miljoen jaar geleden

jongen

24 april 2014 Caroline Kraaijvanger

Wordt het een jongetje of een meisje? Vandaag de dag wordt het verschil tussen die twee bepaald door het Y-chromosoom. Maar dat was niet altijd zo. Nieuw onderzoek toont aan dat de geslachtsbepalende genen op het Y-chromosoom 180 miljoen jaar geleden ontstonden.

Het verschil tussen mannen en vrouwen wordt bepaald door één enkel element in ons genoom: het Y-chromosoom. Alleen mannen hebben het: zij beschikken over een Y- en X-chromosoom, terwijl vrouwen het met twee X-chromosomen moeten doen. Daarmee is het Y-chromosoom verantwoordelijk voor alle morfologische en fysiologische verschillen tussen mannen en vrouwen.

Identiek Vroeger was dat echter anders. Heel lang geleden waren het X- en Y-chromosoom identiek. Maar op een gegeven moment begon het Y-chromosoom te veranderen en te verschillen van het X-chromosoom. En tegenwoordig zijn de verschillen tussen de twee chromosomen groot. Zo telt het Y-chromosoom maar negentien genen, terwijl het X-chromosoom er meer dan duizend bezit.

Oorsprong Hoewel we een aardig beeld hebben van de geschiedenis van het Y-chromosoom, wisten we lang niet wanneer die geschiedenis precies begon. Wanneer ontstond het Y-chromosoom? Een nieuw onderzoek schept duidelijkheid. De eerste geslachtsbepalende genen ontstonden zo’n 180 miljoen jaar geleden in zoogdieren.

Het onderzoek De onderzoekers trekken die conclusie nadat ze weefsels van verschillende soorten zoogdieren bestudeerden. Ze richtten zich daarbij op placentadieren (apen, mensen, olifanten), buideldieren (kangoeroes) en eierleggende zoogdieren (mierenegel en vogelbekdier). De onderzoekers vergeleken de genetische sequentie van mannetjes en vrouwtjes om vervolgens alle sequenties die beide geslachten hadden, buiten beschouwing te laten. Wat zo overbleef waren de sequenties die bij het Y-chromosoom hoorden. Op basis van die informatie konden de onderzoekers vaststellen dat het geslachtsbepalende gen in placentadieren en buideldieren – SRY genoemd – zo’n 180 miljoen jaar geleden in een gezamenlijke voorouder ontstond. Het gen dat in eierleggende zoogdieren verantwoordelijk is voor het ontstaan van het Y-chromosoom – gen AMHY – ontstond zo’n 175 miljoen jaar geleden. Zowel SRY als AMHY – beiden betrokken bij de ontwikkeling van de testikels – ontstonden dus vrijwel tegelijkertijd, onafhankelijk van elkaar.

Het Y-chromosoom dat op genetisch niveau het verschil tussen mannen en vrouwen maakt, ontstond dus zo’n 180 miljoen jaar geleden. Maar welk mechanisme zorgde er voor die tijd voor dat een organisme als mannetje of vrouwtje ter wereld kwam? Waren er andere chromosomen die dat toen bepaalden? Het zou kunnen. Maar wellicht had het ook te maken met omgevingsfactoren, zoals de temperatuur in het leefgebied van organismen. Vandaag de dag bepaalt dat nog altijd of krokodillen als mannetje of vrouwtje ter wereld komen.

WAT IS EEN SOORT ?

 °

I  °SOORTEN 

 watis een soort <–Doc archief 

soortbastaarden  <–Doc archief

-SOORTPROBLEEM 

Axolotl en het soortprobleem

°

SOORTVORMING 

CICHLIDS  <–doc archief 

°

Wat is een soort?

op 17 januari 2014    14

tijger

Jaarlijks worden er heel wat nieuwe soorten beschreven. Maar wat is nu eigenlijk een soort? Een simpele vraag waarop heel wat complexe antwoorden geformuleerd zijn door biologen en filosofen.

Tijd voor een overzicht.

Wat is een soort? Vele biologen deinzen stilletjes achteruit wanneer zij met deze vraag geconfronteerd worden.

Charles Darwin gaf het reeds aan in ‘On the Origin of Species:

“Geen enkele definitie heeft vooralsnog alle naturalisten tevreden gesteld; toch weet elke naturalist vaag wat hij bedoelt als hij over een soort spreekt.

Sindsdien zijn er talloze artikels en boeken over dit onderwerp geschreven. En naast biologen hebben ook enkele filosofen bijgedragen aan de discussie.

“WAT IS DE ESSENTIE VAN DE TIJGER? STREPEN? NEE!”

Essentialisme
Metafysica is een traditionele tak van de filosofie die zich bezighoudt met het verklaren van het fundamentele “zijn”.

Bestaan de dingen die wij waarnemen werkelijk of zijn het constructies van onze hersenen? Deze vraag kan ook toegepast worden op soorten.(1)

Sommige filosofen volgen het essentialisme en zien soorten als natuurlijke entiteiten (Engels: natural kinds). Een entiteit wordt gekenmerkt door een eigenschap (i.e., de essentie) die noodzakelijk is om lid te zijn van een bepaalde groep.

Een chemisch element, zoals bijvoorbeeld koolstof (C), is een entiteit, want alle koolstofatomen worden gekenmerkt door een essentiële eigenschap, het atoomnummer (het aantal protonen in de kern).

Als een element atoomnummer 6 heeft, dan is het koolstof. Maar heeft een element atoomnummer 7, dan hebben we te maken met stikstof (N).

Het atoomnummer is dus de essentie van een chemisch element.

Nu kan men dit principe doortrekken naar soorten. Heeft elke soort een essentie? Bijvoorbeeld, wat is de essentie van de soort tijger (Panthera tigris)? Strepen? Nee, want er bestaan andere soorten met een gestreept vachtpatroon, zoals de zebra.

U kunt blijven zoeken, maar een essentie voor elke soort zult u niet vinden.

°

Kenmerk van clusters
Toch hebben filosofen het essentialisme niet opgegeven.

Als soorten niet door een enkele essentie gekenmerkt worden, dan misschien door een verzameling kenmerken.

In het geval van de tijger, kunnen we een lijst opstellen met kenmerken, zoals gestreepte vacht, katachtige, carnivoor, enzovoort. Deze denkwijze, gebaseerd op clusters van kenmerken, werd geïntroduceerd door Ludwig Wittgenstein. Maar opnieuw komen we voor een probleem te staan.

Kijk bijvoorbeeld naar de wilde eend (Anas platyrhynchos). De mannetjes en vrouwtjes van deze veelvoorkomende vogel zien er totaal verschillend uit.

Het is onmogelijk om een lijst kenmerken op te stellen waardoor zowel mannetjes als vrouwtjes tot de entiteit ‘wilde eend’ behoren.

Richard Boyd loste deze situatie op met het principe van homeostatische clusters van kenmerken. Hij stelde dat een soort beschreven kan worden door een verzameling van kenmerken, maar dat een individu niet alle kenmerken moet bezitten om tot een soort gerekend te worden.

Stel dat de wilde eend beschreven wordt door tien kenmerken (om het even simpel te houden), waarvan zeven het mannetje beschrijven en zes het vrouwtje (sommige kenmerken zijn natuurlijk gemeenschappelijk), dan kunt u ‘wilde eend’ als entiteit beschouwen.

Evolutie
Probleem opgelost?

Niet dus, een essentie (in dit geval de homeostatische cluster van kenmerken) is tijdloos en eeuwig.

Een chemisch element met atoomnummer 6 is altijd koolstof, waar en wanneer we het ook tegenkomen.

Maar soorten zijn niet tijdloos en eeuwig, soorten ondergaan evolutionaire veranderingen.

Filosofen hebben twee oplossingen voor dit probleem:

soorten als historische entiteiten of als individuen.

Alle kenmerken die tot nu toe gebruikt werden om soorten te beschrijven waren intrinsiek, ze komen voort uit het individu zelf.

Maar er zijn ook extrinsieke kenmerken die bepaald worden door uitwendige invloeden.

Ik ben bijvoorbeeld de broer van mijn zus (klinkt logisch, toch?). Het feit dat ik een broer ben, is geen intrinsieke eigenschap, maar wordt bepaald door de relatie die ik heb met iemand anders (in dit geval mijn zus).

Op dezelfde manier kan een soort extrinsieke kenmerken hebben doordat alle individuen afstammen van een bepaalde gemeenschappelijke voorouder.

De onderlinge relatie tussen de individuen is de (historische) essentie van de soort.

Een andere zienswijze is soorten als individuen. Een individu heeft een bepaalde positie in tijd en ruimte. Er is een begin en een einde, hiertussen verandert het individu voortdurend. Dezelfde redenering kan toegepast worden op soorten: een soort ontstaat (speciatie) en verdwijnt (extinctie), hiertussen verandert de soort voortdurend (evolutie). Deze zienswijze is erg populair bij biologen, terwijl filosofen eerder vastklampen aan het essentialisme.

De soort als individu.

De soort als individu.

°

Biologisch Soort Concept
Genoeg gefilosofeerd, tijd om het eens langs de biologische kant te bekijken.

Iedereen kent natuurlijk het Biologische Soort Concept (BSC) van Ernst Mayr:

“Een soort is een groep populaties waarvan de individuen het potentieel hebben om onderling vruchtbare nakomelingen te produceren.”

Het bekendste voorbeeld behandelt paarden en ezels. Zij behoren tot verschillende soorten omdat de nakomelingen van een kruising tussen paard en ezel onvruchtbaar zijn.

Hoewel het Biologische Soort Concept veel gebruikt werd, heeft het enkele nadelen.

Ten eerste, sommige populaties (die tot dezelfde soort gerekend worden) leven gescheiden van elkaar en wetenschappers kunnen dus nooit vaststellen of leden van die populaties onderling ( op natuurlijke wijze ) kunnen kruisen.

Vaak is het onbegonnen werk om alle mogelijke combinaties uit te proberen.

Ten tweede, er zijn heel wat vruchtbare kruisingen bekend tussen individuen die tot verschillende soorten behoren.

Robert Kraus (Wageningen Universiteit) en collega’s toonden bijvoorbeeld aan dat diverse eendensoorten onderling extensief kruisen, met uitwisseling van genetisch materiaal als resultaat.

Volgens het Biologisch Soort Concept behoren alle betrokken eendensoorten dan tot één enkele soort, hoewel ze morfologisch zeer verschillend zijn.

Ten derde, dit soortconcept kan enkel toegepast worden op soorten die zich seksueel voortplanten.                                                   Aseksuele organismen worden simpelweg genegeerd.

“IN THEORIE WEET MEN DUS WAT EEN SOORT IS, MAAR IN DE PRAKTIJK BLIJKT HET AARTSMOEILIJK OM SOORTEN AF TE BAKENEN”

Theorie versus praktijk
Omdat het Biologisch Soort Concept niet altijd toepasbaar of praktisch is, werden andere concepten geformuleerd.

In 1997 verzamelde Richard Mayden (Saint Louis University, Missouri, USA) alle soortconcepten.

Op dat moment waren er minstens 24 concepten in gebruik. (2)

Hij ontdekte het probleem dat had geleid tot deze enorme diversiteit aan soort concepten: het gebrek aan een scheiding tussen theorie en praktijk.

In theorie weten alle biologen wat een soort is, maar in de praktijk is het zeer moeilijk om individuen in soorten te verdelen.

Mayden stelde voor om een onderscheid te maken tussen een primair, theoretisch soortconcept en secondaire, praktische soortconcepten.

Als primaire concept bracht hij het Evolutionaire Soort Concept (ESC) van George Gaylord Simpson naar voren. Dit concept stelt het volgende:

“een soort is een voorouder-afstammeling lijn die onafhankelijk van andere lijnen evolueert met zijn specifieke evolutionaire rol en betekenis.”

Alle andere soortconcepten zijn secundair en kunnen in de praktijk gebruikt worden.

Kevin de Queiroz (Smithsonian Institution, Washington DC, VS) werkte dit principe verder uit en introduceerde het tegenwoordig veelgebruikte General Lineage Concept‘.

Dit concept is zeer technisch met heel wat complexe terminologie (vandaar dat ik het voorlopig hierbij zal laten), maar lijkt sterk op het Evolutionaire Soort Concept van Simpson.

In theorie weet men dus wat een soort is, maar in de praktijk blijkt het aartsmoeilijk om soorten af te bakenen. Dit heeft te maken met de manier waarop soorten ontstaan.

Er zijn diverse modellen van soortvorming geformuleerd, maar elke situatie is hoe dan ook uniek.

Richard G. Harrison (Cornell University, Ithaca, VS) vatte dit idee samen in de ‘Life History Approach waarbij elke soort een specifieke levensgeschiedenis heeft waarvan de afzonderlijke fasen overeenkomen met verschillende soortconcepten.

Om dus te bepalen of twee individuen behoren tot verschillende soorten, moet men de evolutionaire geschiedenis van de betrokken soorten eerst achterhalen.

°

Bronmateriaal:


Boyd, R. (1999) Homeostasis, Species and Higher Taxa. In Wilson, R.A. Species: New interdisciplinary essays. MIT Press, Cambridge.
de Queiroz, K. (1998). The general lineage concept of species: Species criteria and the process of speciation. In Howard, D.J., Berlocher, S.H. Endless forms: Species and speciation. New York: Oxford University Press. pp. 57–75.
Ghiselin, M.T. (1997) Metaphysics and the Origin of Species. State University of New York Press, Albany.
Kraus R.H.S et al. (2012) Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks. BMC Evolutionary Biology, 12:45.
Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In Claridge, M.F., Dawah, H.A., Wilson, M.R. Species: The units of biodiversity. London: Chapman and Hall. pp. 381–4.
Mayr, E. (1942). Systematics and the Origin of Species, from the Viewpoint of a Zoologist. Cambridge: Harvard University Press.

Richards, R.A. (2010) The Species Problem: A Philosophical Analysis. Cambridge University Press.

The Species Problem Philosophical Analysis Richard Richards[1]   pdf

De foto bovenaan dit artikel is gemaakt door Moni Sertel (cc via Flickr.com).

 

_________________________________________________________________________________________

APPENDIX  

AANVULLINGEN EN KOMMENTAREN 

°

OVER SUBSOORTEN  (en   klassieke  kweek en kruisings- programma’s om  “verloren soorten”  terug te brengen )

…..

(een opinie over iets wat mij stoort in natuurbescherming:)

Ik erger me persoonlijk aan biologen die soorten puur willen houden, en daarin ook zeer fanatiek zijn. Ik begrijp het wel, want het resulteert vaak, uiteindelijk, in het verlies van een soort, in ieder geval het uiterlijk, qua genen weet ik niet.

De wilde eend bijvoorbeeld is op een aantal plekken geintroduceerd, en paart er flink op los met zijn exotische verwanten, zoals bijvoorbeeld de wenkbrauweend. Biologen spreken dan van genetische vervuiling, wat nogal doet denken aan een bepaalde politieke stroming, en organiseren in gevallen uitroeiings campagnes om hun soort te behouden van de ondergang.

Een aantal dieren in de dierentuin mogen niet worden geherintroduceerd in het wild omdat ze niet raszuiver zouden zijn.

Ik denk dan, de omgeving selecteerd uiteindelijk wel het beste type. Subsoorten zijn ook ontstaan uit één type, de vraag is alleen of wij dat zouden meemaken als subsoorten zich nu vermengen.

En daarnaast, ik heb geleerd van diezelfe biologen dat genetische diversiteit goed zou zijn, dus waarom geldt dat niet bij bijvoorbeeld de tijger (dierentuin) of de wilde eend en variaties?

Nog zoiets, beschermers van de wolf zijn dolblij dat wolven populaties die genetisch verschillend zijn, zoals de Italiaanse en Spaanse populatie, zich vermengen. Hoezo is dat geen genetische vervuiling?

Het zal ook wel de angst zijn dat een soort “het te goed doet”.

Of de ideologie dat invloed van mens onnatuurlijk is, wat paradoxaal is omdat we tegenwoordig vrijwel al het leven beinvloeden op de wereld. (Het overgrote gedeelte natuur in Nederland is bijvoorbeeld gemaakt door mensen handen en kan zonder de mens zichzelf niet in stand houden (denk aan naaldbossen en heide))

Avatarauteur  Jente  

……. Mijn onderzoek draait rond hybridisatie bij ganzen en ik denk dat zuivere soorten een illusie zijn

Ja ganzen kunnen er wat van. Op waarneming.nl staat een 20-tal hybrides.

Een ander voorbeeld: wisenten en bisons hebben bloed van onze runderen. In ieder geval de Russische populatie in de Kaukasus.

Bij tijgers is het trouwens wel zo dat de Sumatraanse tijger kleiner is, een aanpassing aan het leefgebied. Dus een Siberische tijger loslaten op Sumatra is dan weer niet zo’n goed idee. Maar ik vind het extreem als een grotendeels Sumatraanse tijger niet kan worden geherintroduceerd omdat het deels bloed heeft van bijvoorbeeld een Bengaalse tijger.

En ik denk ook dat biologen het aanpassingsvermogen van dieren onderschatten. Het gedomesticeerde varken veranderde al snel weer in het wild-type zwijn, en doet het uitstekend in bijvoorbeeld Australie en de Verenigde Staten. Die verwilderde varkens zijn dan wel vaak bont.

(Voorbeeld ) Hogzilla was a male hybrid of wild hog and domestic pig that was shot and killed by Chris Griffin in Alapaha, Georgia, United States, on June 17, 2004

It was originally considered a hoax
http://upload.wikimedia.org/wi…

Ik lees net op wikipedia dat de wilde zwijnen in Europa ook voor een deel gedomesticeerd bloed hebben.

http://www.natuurbericht.nl/?i…

Bij  de Duitse wilde zwijnen populaties  komen nog regelmatig bonte voor.

Er zijn nog veel interessante wetenswaardigheden over dit onderwerp.

Het is nu algemeen bekend dat wij DNA hebben van neanderthalers, maar de Aboriginals hebben bijvoorbeeld ook DNA van H. Denisova.

Bij de rode wolf was het onduidelijk of het een aparte soort was of een hybride tussen coyote en wolf. Ondertussen wordt het wel beschouwd als aparte soort.

De coyotes van de oostkust zijn wel echt hybrides tussen coyote en wolf, volgens wat ik nu net heb gelezen.

De wetenschap gaat zo snel dat ik soms dingen lees die na een jaar al weer niet correct zijn.

En het schijnt dat er zwarte wolven zijn omdat het ontstaan is bij honden en dat via honden de wolven ( twee nauw verwante soorten )  het gen voor zwarte vacht kregen.

De zwarte vacht schijnt wolven beter bestand te “maken” tegenover ziektes.

°

Ik wijs hierbij op de herhaalde  hoogstwaarschijnlijke    kruisingen ( genoomonderzoeken van Svante Paabo )van de vroege homo sap  mens met andere vertegenwoordigers van nauw verwante ( uitgestorven )  mensachtigen(neanderthaler / Denisova  / Erectus ?  )  … Ook hier scheen die  uitwisselingen van genen  een voordeel te hebben geboden   ( maar soms ook een nadeel  —> de verhoogde vatbaarheid  van  zuid amerikanen  voor diabetes bijvoorbeeld  ( afkomstig van   een   oost- aziatische neanderthaler populatie  , ook gevonden rond Denisova  en waarvan het beschikbare  gedeelte van het  relevante  genoom is ge- sequensed  )

(1)  FILOSOFISCHE  SITUERING VAN DE  GEBRUIKTE   TERMEN  

Of  de ” dingen”  werkelijk zijn ( zoals we   ze  ons voorstellen ) of slechts  menselijke “ideen” (–> Plato en de universalia leer      )of zelfs alleen maar (nuttig bevonden ) hersenspinsels  en projekties   zijn  of   hoogstens constructies (met eventueel enige vereenvoudigde  en gelimiteerde weergave van (connecties met ) de werkelijkheid —> Model )werden traditioneel filosofisch ook   behandeld door  het zogenaamde  kennistheoretische    ” Realisme <–>nominalisme  debat  “ 

http://nl.wikipedia.org/wiki/Nominalisme

” …..Het nominalisme is een theologische/filosofische stroming uit de tweede helft van de Middeleeuwen. Deze stroming binnen de metafysica acht de individuele dingen als werkelijk en niet de universele gestalte ervan. Niet de boomheid is werkelijk, maar de individuele boom  …. 

“t ….Het nominalisme stond tegenover het middeleeuwse realisme (homoniem voor verschillende stromingen), waarin vooral wordt gedacht in termen van het zijn en dat juist de universalia (algemeen voorkomende abstracte begrippen als kleur, smaak en dergelijke) beschouwt als werkelijk. Universalia zijn die kenmerken van een bepaald voorwerp, die het maken tot het bepaalde voorwerp dat het is. ( = essentialisme   dus )

De in alle bomen terugkerende gestalte van de boomheid is werkelijk en niet zozeer de individuele boom.

Volgens die richting is dus –>  een tijger , een tijger omdat hij deel heeft aan de “tijgerheid “—> de foto bovenaan dit artikel neemt ook deel aan de “tijgerheid ” maar dan niet de “volledige tijgerheid ” ….Maar wat de volledige ‘tijgerheid ‘inhoud , weten we (nog) niet   ( ook de tijger niet ) 

°

( de biologen spreken niet van‘ tijgerheid ‘ maar van “tijgerachtigen “ en dat heeft te maken met geneste hierarchieen  )

Nested Hierarchies

Common ancestry is conspicuous.
Evolution predicts that living things will be related to one another in what scientists refer to as nested hierarchies—rather like nested boxes. Groups of related organisms share suites of similar characteristics and the number of shared traits increases with relatedness. This is indeed what we observe in the living world and in the fossil record and these relationships can be illustrated as shown below.

cladogram illustration showing nested hierarchies

In this phylogeny, snakes and lizards share a large number of traits as they are more closely related to one another than to the other animals represented. The same can be said of crocodiles and birds, whales and camels, and humans and chimpanzees. However, at a more inclusive level, snakes, lizards, birds, crocodiles, whales, camels, chimpanzees and humans all share some common traits.

Humans and chimpanzees are united by many shared inherited traits).

But at a more inclusive level of life’s hierarchy, we share a smaller set of inherited traits in common with all primates. More inclusive still, we share traits in common with other mammals, other vertebrates, other animals.

At the most inclusive level, we sit alongside sponges, petunias, diatoms and bacteria in a very large “box” entitled: living organisms.

—>  Menselijke constructies   = 

Definities (=begrenzingen) zijn bijna altijd man made, :  gemaakt als hulp- of werkhypothese. Echte grenzen komen in de natuur maar zelden voor.

DNA-barcode maakt snelle ontdekking nieuwe  en determinatie  van  reeds   bekende  soorten , mogelijk of minstens gemakkelijker

Door het genetisch profiel van dieren en planten in een snel te lezen streepjescode te vatten is de ontdekking van nieuwe variëteiten en een betere bescherming van de biodiversiteit mogelijk.
—> Maar critici vrezen misbruik door multinationals.
Picture

DNA-barcodering is een nog zeer jonge discipline die biologische soorten wil identificeren aan de hand van een stukje DNA dat alle soorten delen (bij dieren het zogeheten CO1-gen).

°

Stofwisselingsgen CO-1, is  een stukje mitochondriaal DNA van ruim 600 baseparen. Individuen van één  diersoort hebben nagenoeg hetzelfde CO-1-gen. Bij mensen verschilt de streepjescode op slechts een tot twee van de 648 plaatsen. Tussen chimpansees en mensen daarentegen verschilt het gen op zestig plaatsen, tussen mensen en gorilla’s op zeventig plaatsen.

Eind vorig jaar(2003)  verschenen twee wetenschappelijke publicaties waarin de methode op de pijnbank werd gelegd, en werd vergeleken met de traditionele, taxonomische manier van soortbeschrijving.

-In één studie werd de streepjescode van 260 soorten Noord-Amerikaanse vogels bepaald. Alle vogelsoorten hadden zoals verwacht een verschillende streepjescode, op vier na. Die hadden twee aan twee hetzelfde CO-1-gen.

Dezelfde soorten, luidde de conclusie dan ook.

– In een andere studie, waar onder meer Paul Hebert aan meewerkte, werden exemplaren van de Costaricaanse vlindersoort ‘Astraptes fulgerator’ onder de streepjescode-lezer gelegd.

Niet één soort, luidde de conclusie, maar tien verschillende soorten.

Taxonomen hadden zich laten misleiden door de identieke verschijningsvorm van de volwassen vlinders – alle tien hebben ze beige vleugels, met een blauw centrum. Onderzoekers vermoedden al langer dat er iets niet in de haak was met de Astraptes – de vlinders komen voort uit verschillende rupsen, en hebben bovendien een verschillend dieet.

De streepjescode werkt, willen de onderzoekers maar zeggen.

Het is een bruikbaar gereedschap om soorten van elkaar te onderscheiden.

Haken en ogen zitten er evenwel ook aan de methode.

Zo is het nog maar de vraag of recent van elkaar afgesplitste soorten wel worden herkend.

Bovendien is al duidelijk dat één streepjescode niet genoeg is, legt Erik van Nieukerken van het natuurhistorisch museum Naturalis in Leiden, en deelnemer aan het symposium in Londen, uit:

“Voor amfibieën werkt CO-1 niet als streepjescode. Binnen één soort varieert dat gen veel te veel. Ook bij planten werkt CO-1 niet als identificatieplaatje. Daar zal een ander gen, afkomstig uit de bladgroenkorrels, voor worden gebruikt.

In Londen werd de start van drie megaprojecten bekendgemaakt. De komende jaren moeten de streepjescodes van álle bekende vogels (tienduizend soorten) en vissen (23 duizend soorten) bepaald worden.

Daarnaast zal de streepjescode van achtduizend zaaddragende planten op Costa Rica worden bepaald.

Worden taxonomen nu overbodig, als iedere avonturier met een draagbaar apparaatje soorten kan determineren en wellicht nieuwe soorten kan ontdekken?

Daar maakt Van Nieukerken zich niet ongerust over.

“Taxonomie is nu een versnipperde wetenschap. Kennis is verspreid over duizenden artikelen en voorwerpen in musea en bibliotheken. Op deze manier komt die informatie voor iedereen beschikbaar. Democratisering van taxonomische kennis, dus.

°

Als men al die DNA-stukjes in kaart heeft gebracht, zal men met een scanapparaatje meteen kunnen achterhalen tot welke soort een plant of dier behoort.

“Het zal de biodiversiteit van het land helpen documenteren, zodat we nadien beter beschermingsplannen kunnen maken“, zegt onderzoekster Lidia Cabrera van het Biologisch Instituut van de Nationale Autonome Universiteit van Mexico (UNAM).

Mexico behoort tot de top 5 van landen met de grootste biodiversiteit ter wereld.  Het herbergt 108.519 soorten, waarvan 72.327 dieren, 29.192 planten en 7000 schimmels.

Revolutie voor taxonomen.

“Het bepalen van een soort op een betrouwbare en snelle manier zal een revolutie betekenen voor de manier waarop we de ons omringende natuur waarnemen en voor de wetenschappen die haar bestuderen, zoals de ecologie en de taxonomie“, zegt Manuel Elías van Ecosur.

Het Mexicaanse project heeft tot dusver gegevens van 20 procent van de vissen, van 70 procent van de vogels en van 10 procent van de planten.

De databank van MexBOL moet uiteindelijk openbaar worden.

Niet iedereen in Mexico is gelukkig met het project.

“Het fundamentele probleem is dat het wordt voorgesteld alsof het alleen maar een onderzoeksproject is, terwijl het een reeks organismen classificeert waarin de multinationals in de farmaceutische industrie en de synthetische biologie geïnteresseerd zijn”, zegt Silvia Ribeiro, directeur Latijns-Amerika van de Actiegroep Erosie, Technologie en Concentratie (ETC). “Er bestaat geen enkele waarborg in dit verband.” Ze wijst erop dat er in het internationale Biodiversiteitsverdrag van 1992 niets staat over artificiële creatie op basis van biologisch materiaal.

Maar daarvoor bestaat het Nagoya-protocol over de toegang tot genetische rijkdommen, dat in 2010 door 116 landen werd ondertekend en in werking treedt zodra 50 landen het hebben geratificeerd.

In Mexico was er eind jaren negentig al heel wat ophef rond het verzamelen van genetisch materiaal.Ecosur, de Amerikaanse Universiteit van Georgia en het Britse Molecular Nature waren in 1997 het project ICBG-Maya gestart in de zuidelijke deelstaat Chiapas. Dat moest onder meer tot de ontwikkeling van nieuwe medicijnen op basis van natuurproducten leiden.

Sociale en inheemse organisaties protesteerden. Ze vreesden dat het de deur zou openzetten naar biopiraterij en het commerciële gebruik van biologisch materiaal. Vooral de zending van zevenduizend stalen naar de Universiteit van Georgia leidde tot grote bezorgdheid. De VS hebben het Biodiversiteitsverdrag en het Nagoya-protocol niet ondertekend. Amerikaanse bedrijven zouden het genetisch materiaal commercieel kunnen exploiteren. Door het protest werd ICBG-Maya in 2000 stopgezet.

Ook bij DNA-barcodering spelen de VS een belangrijke rol, zeggen critici. Het internationale Consortium voor de Barcode van het Leven (CBOL), dat in 2004 is opgericht, heeft zijn secretariaat in het National Museum of Natural History in Washington.

Volgens onderzoeker Lidia Cabrera is misbruik niet mogelijk.

“Het gaat maar om een klein DNA-fragment, dat technologisch gezien NIET  gebruikt kan worden om genetisch gemodificeerde gewassen te maken. Daarvoor moet men de  totale plant kennen en de kenmerken van de soorten.”

“Ik zie niet in hoe een stukje gen de commerciële bedoelingen van grote bedrijven kan dienen”,

zegt ook Elías.

Maar volgens Silvia Ribeiro is”geen enkele voorzorg genomen tegen het patenteren van welke modificatie van de genetische code ook.”

Barcode van het Leven

Het internationale project voor DNA-barcodering wordt vaak als de Barcode van het Leven aangeduid. Het ontstond in 2003 aan het Instituut voor Biodiversiteit van de Universiteit van Guelph in Canada, onder impuls van bioloog Paul Herbert.

Een jaar later werd het Consortium voor de Barcode van het Leven opgericht. Mexico trad tot het consortium toe in 2009.

De databank telt al meer dan 1,2 miljoen exemplaren van ruim 100.000 soorten. In 2015 wil CBOL de barcodes van minstens een half miljoen soorten hebben.

Wereldwijd zijn er meer dan achtduizend van dergelijke DNA-projecten aan de gang.

De resultaten worden  besproken  de   internationale conferenties over DNA-barcodering. en op het blog van de universiteit  van rockefeller 

http://phe.rockefeller.edu/barcode/blog/

°

Als je de soort benadert als een verzameling individuen loop je er inderdaad tegenaan dat er dan binnen de soort essentiële verschillen zijn, vooral tussen mannelijk en vrouwelijk. Je kan dat oplossen door te stellen dat de soort uit 2 (of meer) verzamelingen bestaat: man en vrouw.

*De definitie van Ernst Mayr:(Biologisch soort concept ) 

“Een soort is een groep   populaties waarvan de individuen het potentieel hebben om onderling vruchtbare nakomelingen te produceren.” Blijkt een goede werkhypothese en je kan aan de bezwaren tegemoetkomen door scherper te definiëren, zoals:

Een soort is een eenheid van voortplanting, waarbinnen de voortplanting hoofdzakelijk of uitsluitend plaatsvindt.  (*)

Dat geldt dan ook voor een  aantal vogelsoorten, die  toch  onderling vruchtbaar zijn.

* ( mijn Kommentaar ) De begrenzing ( de barrière ) van dergelijke soorten   ligt daar dus niet alleen  bij de  fysieke vruchtbaarheid, ( bijvoorbeeld is het moeilijk voorstelbaar dat een chihuahua en een deense dog ooit  zullen paren (op natuurlijke wijze )…….maar door bijvoorbeeld    niche invulling  😦 zoals bij veel insecten ) voedselkeuze , kolonisatie van nieuwe gebieden  … etc … verschillen in  vruchtbaarheidsperiodes  ( bron,stperiodes )  volgend op  aanpassingen  van de populatie  aan  de lokale  omstandigheden …. en zelfs  door het bestaan van   RING-species  wanneer het bijvoorbeeld  gaat om kosmopolieten  met lokale ecomorfen (of rassen , om maar eens een beladen woord te gebruiken  ) en of  variabel gedrag en verschillende    “culturele normen  ” 

Er  zijn  niettemin  hybride soorten en  dan  wordt dat probleem ( van het tussen twee stoelen zitten  )dus soms opgelost.

Die voortplantingseenheid kan men ook in historisch perspectief zien en dan is er verband met de genetische afstammingslijnen. ( stambomen en fylogenetica )

De voortplantingseenheid functioneert niet overal even sterk  doordat dieren die op grote afstand wonen niet met elkaar  kunnen paren.maar ze kunnen  toch met elkaar verbonden door     tussenliggende  verwanten –  buurtschappen van beide populaties of    ondersoorten van dezelfde soort  —>  RING species …

Een goed voorbeeld is bijvoorbeeld  de  mens zelf   

ringspecies  &  subspecies

ringspecies 2

Himalayan ringspeciesEr is dan vaak wel genetische uitwisseling tussen de populaties en als die er niet  meer is dan kan de eenheid nog geruime tijd blijven bestaan, in feite dan als potentiële voortplantingseenheid. Ook hier is de historisch achtergrond van de soort als voortplantingseenheid van belang.

Ook de ongeslachtelijke voortplanting geschiedt binnen de eenheid van de soort. Hoewel dat minder relevant lijkt omdat ongeslachtelijke voortplanting primair genetisch identieke individuen voortbrengt langs de afstammingslijnen. Toch voldoet de definitie daar dan,( denk ik.)—> Alleen is er  onderscheid te maken tussen microscopische wezen en  zogenaamde  “grotere” zichtbare soorten die zich voortplanten dmv clonen (wortelstekken ) en zelfs diersoorten die bestaan uit uitsluitend vrouwelijke dieren  (en die het moeten hebben van maagdelijke geboortes  of parthenogenese  ….

> bv wiptail lizards  ) er wel genetische uitwisseling mogelijk ( met andere soorten dan  —> HGTof horizontale genoverdracht ….deze soorten staan dan ook dichter bij de wortels van de boom en vormen daar (genetisch gezien een netwerk  )

*OPMERKING : De meeste  van de soort-concepten zijn (historisch )  opgesteld door zooologen …. Microbiologen en botanici  zullen veel frekwenter  allerlei  andere  concepten gebruiken   en dat volgt uit de aard van hun  vakgbied en de daar waargenomen  en gedocumenteerde   feiten  : neem bijvoorbeeld de  voortplantingsystemen en verbanden    bij  verschillende  “soorten ” paardenbloemen    

(2)

http://scienceblogs.com/evolvingthoughts/2006/10/01/a-list-of-26-species-concepts/

A list of 26 Species “Concepts”

 John S. Wilkins  October 1, 2006

Here is a working list of species concepts presently in play. I quote “Concepts” above because, for philosophical reasons, I think there is only one concept – “species”, and all the rest are conceptions, or definitions, of that concept. I have christened this the Synapormorphic Concept of Species in (Wilkins 2003). More under the fold:

A Summary of 26 species concepts

There are numerous species “concepts” (i.e., conceptions of “species”) at the research and practical level in the scientific literature. (Mayden 1997) has listed 22 distinct species concepts along with synonyms, which provides a useful starting point for a review. I have added authors where I can locate them in addition to Mayden’s references, and instead of his abbreviations I have tried to give the concepts names, such as biospecies for Biological Species, etc. (following George 1956), except where nothing natural suggests itself. There have also been several additional concepts since Mayden’s review, which I have added the views of Pleijel and Wu, and several new revisions presented in Wheeler and Meier (2000). I also add some “partial” species concepts – the compilospecies concept and the nothospecies concept. I distinguish between two phylospecies concepts that go by various names, mostly the names of the authors presenting at the time (as in the Wheeler and Meier volume). To remedy this terminological inflation, I have christened them the Autapomorphic species concept and the Phylogenetic Taxon species concept.

1. Agamospecies

Synonyms: Microspecies, paraspecies, pseudospecies, semispecies, quasispecies, genomospecies (for prokaryotes Euzéby 2006) Principal authors: Cain (1954), Eigen (1993, for quasispecies) Specifications: Asexual lineages, uniparental organisms (parthenogens and apomicts), that cluster together in terms of their genome. May be secondarily uniparental from biparental ancestors.

2. Autapomorphic species

See: Phylospecies Principal authors: Nelson and Platnick (1981); Rosen (1979) Specification: A geographically constrained group of individuals with some unique apomorphous characters, the unit of evolutionary significance (Rosen); simply the smallest detected samples of self-perpetuating organisms that have unique sets of characters (Nelson and Platnick); the smallest aggregation of (sexual) populations or (asexual) lineages diagnosable by a unique combination of character traits (Wheeler and Platnick 2000).

3. Biospecies

Synonyms: Syngen, speciationist species concept Related concepts: Biological species concept, Genetic species, isolation species Principal authors: John Ray, Buffon, Dobzhansky (1935); Mayr (1942) Specifications: Inclusive Mendelian population of sexually reproducing organisms (Dobzhansky 1935, 1937, 1970), interbreeding natural population isolated from other such groups (Mayr 1942, 1963, 1970; Mayr and Ashlock 1991). Depends upon endogenous reproductive isolating mechanisms (RIMs).

4. Cladospecies

Synonyms: Internodal species concept, Hennigian species concept, Hennigian convention Principal authors: Hennig (1966; 1950); Kornet (1993) Specifications: Set of organisms between speciation events or between speciation event and extinction (Ridley 1989), a segment of a phylogenetic lineage between nodes. Upon speciation the ancestral species is extinguished and two new species are named.

5. Cohesion species

Synonyms: Cohesive individual (in part) (Ghiselin and Hull) Principal authors: Templeton (1989) Specifications: Evolutionary lineages bounded by cohesion mechanisms that cause reproductive communities, particularly genetic exchange, and ecological interchangeability.

6. Compilospecies

Synonyms: None Related concepts: Introgressive taxa Principal authors: Harlan (1963), Aguilar (1999) Specifications: A species pair where one species “plunders” the genetic resources of another via introgressive interbreeding.

7. Composite Species

Synonyms: Phylospecies (in part), Internodal species (in part), cladospecies (in part) Principal authors: Kornet (1993) Specifications: All organisms belonging to an internodon and its descendents until any subsequent internodon. An internodon is defined as a set of organisms whose parent-child relations are not split (have the INT relation).

8. Ecospecies

Synonyms: Ecotypes Related concepts: Evolutionary species sensu Simpson, Ecological mosaics Principal authors: Simpson (1961); Sterelny (1999); Turesson (1922); Van Valen (1976) Specifications: A lineage (or closely related set of lineages) which occupies an adaptive zone minimally different from that of any other lineage in its range and which evolves separately from all lineages outside its range.

9. Evolutionary species

Synonyms: Unit of evolution, evolutionary group Related concepts: Evolutionary significant unit Principal authors: Simpson (1961); Wiley (1978); (1981) Specifications: A lineage (an ancestral-descendent sequence of populations) evolving separately from others and with its own unitary evolutionary role and tendencies (Simpson).

10. Evolutionary significant unit

Synonyms: Biospecies (in part) and evolutionary species (in part) Principal authors: Waples (1991) Specifications: A population (or group of populations) that (1) is substantially reproductively isolated from other conspecific population units, and (2) represents an important component in the evolutionary legacy of the species.

11. Genealogical concordance species

Synonyms: Biospecies (in part), cladospecies (in part), phylospecies (in part) Principal authors: Avise and Ball (1990) Specifications: Population subdivisions concordantly identified by multiple independent genetic traits constitute the population units worthy of recognition as phylogenetic taxa

12. Genic species

Synonyms: none Related concepts: Genealogical concordance species, genetic species (in part), biospecies (in part), autapomorphic species (in part) Principal author: Wu (2001b; 2001a) Specifications: A species formed by the fixation of all isolating genetic traits in the common genome of the entire population.

13. Genetic species

Synonyms: Gentes (sing. Gens) Related concepts: Biospecies, phenospecies, morphospecies, genomospecies Principal authors: Dobzhansky (1950); Mayr (1969); Simpson (1943) Specifications: Group of organisms that may inherit characters from each other, common gene pool, reproductive community that forms a genetic unit

14. Genotypic cluster

Synonyms: Polythetic species Related concepts: Agamospecies, biospecies, genetic species, Hennigian species, morphospecies, non-dimensional species, phenospecies, autapomorphic phylospecies, successional species, taxonomic species , genomospecies Principal author: Mallet (1995) Specifications: Clusters of monotypic or polytypic biological entities, identified using morphology or genetics, forming groups that have few or no intermediates when in contact.

15. Hennigian species

Synonyms: Biospecies (in part), cladospecies (in part), phylospecies (in part), internodal species Principal authors: Hennig (1966; 1950); Meier and Willman (1997) Specifications: A tokogenetic community that arises when a stem species is dissolved into two new species and ends when it goes extinct or speciates.

16. Internodal species

Synonyms: Cladospecies and Hennigian species (in part), phylospecies Principal author: Kornet (1993) Specifications: Organisms are conspecific in virtue of their common membership of a part of a genealogical network between two permanent splitting events or a splitting event and extinction

17. Least Inclusive Taxonomic Unit (LITUs)

Synonyms: evolutionary group (in part), phylospecies Principal authors: Pleijel (Pleijel 1999; Pleijel and Rouse 2000) Specifications: A taxonomic group that is diagnosable in terms of its autapomorphies, but has no fixed rank or binomial.

18. Morphospecies

Synonyms: Classical species, Linnaean species. Related concepts: Linnean species, binoms, phenospecies, monothetic species, monotypes, types, Taxonomic species Principal authors: Aristotle and Linnaeus, and too many others to name, but including Owen, Agassiz, and recently, Cronquist (1978) Specifications: Species are the smallest groups that are consistently and persistently distinct, and distinguishable by ordinary means (Cronquist). Contrary to the received view, this was never anything more than a diagnostic account of species.

19. Non-dimensional species

Synonyms: Folk taxonomical kinds (Atran 1990) Related concepts: Biospecies, genetic species, morphospecies, paleospecies, successional species, taxonomic species Principal authors: Mayr (1942; 1963) Specifications: Species delimitation in a non-dimensional system (a system without the dimensions of space and time, Mayr 1963)

20. Nothospecies

Synonyms: hybrid species, reticulate species Related concepts: Compilospecies, horizontal or lateral genetic transfer Principal author: Wagner (1983) Specifications: Species formed from the hybridization of two distinct parental species, often by polyploidy.

Phylospecies

Synonyms: Autapomorphic phylospecies, monophyletic phylospecies, minimal monophyletic units, monophyletic species, lineages Related concepts: Similar to internodal species cladospecies, composite species, least inclusive taxonomic units. Principal authors: Cracraft (1983); Eldredge and Cracraft (1980); Nelson and Platnick (1981); Rosen (1979) Specifications: The smallest unit appropriate for phylogenetic analysis, the smallest biological entities that are diagnosable and monophyletic, unit product of natural selection and descent. A geographically constrained group with one or more unique apomorphies (autapomorphies). There are two versions of this and they are not identical. One derives from Rosen and is what I call the Autapomorphic species concept. It is primarily a concept of diagnosis and tends to be favoured by the tradition known as pattern cladism. The other is what I call the Phylogenetic Taxon species concept, and tends to be favoured by process cladists.

21. Phylogenetic Taxon species

See: Phylospecies Principal authors: Cracraft (1983); Eldredge and Cracraft (1980); Nixon and Wheeler(1990) Specifications: A species is the smallest diagnosable cluster of individual organisms within which there is a parental pattern of ancestry and descent (Cracraft); the least inclusive taxon recognized in a classification, into which organisms are grouped because of evidence of monophyly (usually, but not restricted to, the presence of synapomorphies), that is ranked as a species because it is the smallest ‘important’ lineage deemed worthy of formal recognition, where ‘important’ refers to the action of those processes that are dominant in producing and maintaining lineages in a particular case (Mishler and Brandon 1987).

22. Phenospecies

Synonyms: Phena (sing. phenon) (Smith 1994), operational taxonomic unit (OTU) Related concepts: Biospecies, genetic concordance species, morphospecies, non-dimensional species, phylospecies (in part), phenospecies, successional species, taxonomic species, quasispecies, viral species, genomospecies (bacteria) Principal authors: Beckner (1959); Sokal and Sneath (1963) Specifications: A cluster of characters that statistically covary, a family resemblance concept in which possession of most characters is required for inclusion in a species, but not all. A class of organisms that share most of a set of characters.

23. Recognition species

Synonyms: Specific mate recognition system (SMRS) Related concepts: Biospecies Principal author: Paterson (1985) Specifications: A species is that most inclusive population of individual, biparental organisms which share a common fertilization system

24. Reproductive competition species

Synonyms: Hypermodern species concept , Biospecies (in part) Principal author: Ghiselin (1974) Specifications: The most extensive units in the natural economy such that reproductive competition occurs among their parts.

25. Successional species

Synonyms: Paleospecies, evolutionary species (in part), chronospecies Principal authors: George (1956); Simpson (1961) Specifications: Arbitrary anagenetic stages in morphological forms, mainly in the paleontological record.

26. Taxonomic species

Synonyms: Cynical species concept (Kitcher 1984) Related concepts: Agamospecies, genealogical concordance species, morphospecies, phenospecies, phylospecies Principal author: Blackwelder (1967), but see Regan (1926) and Strickland et al. (1843) Specifications: Specimens considered by a taxonomist to be members of a kind on the evidence or on the assumption they are as alike as their offspring of hereditary relatives within a few generations. Whatever a competent taxonomist chooses to call a species.

References

Aguilar, Javier Fuertes, Josep Antoni Roselló, and Gonzalo Nieto Feliner (1999), “Molecular evidence for the compilospecies model of reticulate evolution in >Armeria> (Plumbaginaceae)”, Systematic Biology 48 (4):735-754.

Atran, Scott (1990), The cognitive foundations of natural history. New York: Cambridge University Press.

Avise, J. C., and R. M. Ball Jr (1990), “Principles of genealogical concordance in species concepts and biological taxonomy”, in D. Futuyma and J. Atonovics (eds.), Oxford Surveys in Evolutionary Biology, Oxford: Oxford University Press, 45-67.

Beckner, M (1959), The biological way of thought. New York: Columbia University Press.

Blackwelder, Richard E. (1967), Taxonomy: a text and reference book. New York: Wiley.

Cain, Arthur J. (1954), Animal species and their evolution. London: Hutchinson University Library.

Cracraft, Joel (1983), “Species concepts and speciation analysis”, in R. F. Johnston (ed.), Current Ornithology, New York: Plenum Press, 159-187.

Cronquist, A (1978), “Once again, what is a species?” in LV Knutson (ed.), BioSystematics in Agriculture, Montclair, NJ: Alleheld Osmun, 3-20.

Dobzhansky, Theodosius (1935), “A critique of the species concept in biology”, Philosophy of Science 2:344-355.

—— (1937), Genetics and the origin of species. New York: Columbia University Press.

—— (1950), “Mendelian populations and their evolution”, American Naturalist 74:312-321.

—— (1970), Genetics of the evolutionary process. New York: Columbia University Press.

Eigen, Manfred (1993), “Viral quasispecies”, Scientific American July 1993 (32-39).

Eldredge, Niles, and Joel Cracraft (1980), Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. New York: Columbia University Press.

Euzéby, J.P. (2006), List of Prokaryotic Names with Standing in Nomenclature 2006 [cited 17/2/2006 2006]. Available from http://www.bacterio.cict.fr/.

George, T. N. (1956), “Biospecies, chronospecies and morphospecies”, in P. C. Sylvester-Bradley (ed.), The species concept in paleontology, London: Systematics Association, 123-137.

Ghiselin, Michael T. (1974), The economy of nature and the evolution of sex. Berkeley: University of California Press.

Harlan, J. R., and J. M. J. De Wet (1963), “The compilospecies concept”, Evolution 17:497-501.

Hennig, Willi (1950), Grundzeuge einer Theorie der Phylogenetischen Systematik. Berlin: Aufbau Verlag.

—— (1966), Phylogenetic systematics. Translated by D. Dwight Davis and Rainer Zangerl. Urbana: University of Illinois Press.

Kitcher, Philip (1984), “Species”, Philosophy of Science 51:308-333. Kornet, D (1993), “Internodal species concept”, J Theor Biol 104:407-435.

Kornet, D, and JW McAllister (1993), “The composite species concept”, in, Reconstructing species: Demarcations in genealogical networks, Rijksherbarium, Leiden: Unpublished phD dissertation, Institute for Theoretical Biology.

Mallet, J (1995), “The species definition for the modern synthesis”, Trends in Ecology and Evolution 10 (7):294-299.

Mayden, R. L. (1997), “A hierarchy of species concepts: the denoument in the saga of the species problem”, in M. F. Claridge, H. A. Dawah and M. R. Wilson (eds.), Species: The units of diversity, London: Chapman and Hall, 381-423.

Mayr, Ernst (1942), Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press.

—— (1963), Animal species and evolution. Cambridge MA: The Belknap Press of Harvard University Press.

—— (1969), Principles of systematic zoology. New York: McGraw-Hill.

—— (1970), Populations, species, and evolution: an abridgment of Animal species and evolution. Cambridge, Mass.: Belknap Press of Harvard University Press.

Mayr, Ernst, and Peter D. Ashlock (1991), Principles of systematic zoology. 2nd ed. New York: McGraw-Hill,.

Meier, Rudolf, and Rainer Willmann (1997), “The Hennigian species concept”, in QD Wheeler and R Meier (eds.), Species concepts and phylogenetic theory: A debate, New York: Columbia University Press.

Mishler, Brent D., and Robert N. Brandon (1987), “Individuality, pluralism, and the Phylogenetic Species Concept”, Biology and Philosophy 2:397-414.

Nelson, Gareth J., and Norman I. Platnick (1981), Systematics and biogeography: cladistics and vicariance. New York: Columbia University Press.

Nixon, K. C., and Q. D. Wheeler (1990), “An amplification of the phylogenetic species concept”, Cladistics 6:211-223.

Paterson, Hugh E. H. (1985), “The recognition concept of species”, in E. Vrba (ed.), Species and speciation, Pretoria: Transvaal Museum, 21-29.

Pleijel, Frederik (1999), “Phylogenetic taxonomy, a farewell to species, and a revision of Heteropodarke (Hesionidae, Polychaeta, Annelida)”, Systematic Biology 48 (4):755-789.

Pleijel, Frederik, and G. W. Rouse (2000), “Least-inclusive taxonomic unit: a new taxonomic concept for biology”, Proceedings of the Royal Society of London – Series B: Biological Sciences 267 (1443):627-630.

Regan, C. Tate (1926), “Organic evolution”, Report of the British Association for the Advancement of Science, 1925:75-86.

Ridley, M (1989), “The cladistic solution to the species problem”, Biology and Philosophy 4:1-16.

Rosen, Donn E. (1979), “Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative biogeography”, Bulletin of the American Museum of Natural History 162:267-376.

Simpson, George Gaylord (1943), “Criteria for genera, species and subspecies in zoology and paleontology”, Annals New York Academy of Science 44:145-178.

—— (1961), Principles of animal taxonomy. New York: Columbia University Press.

Smith, Andrew B. (1994), Systematics and the fossil record: documenting evolutionary patterns. Oxford, OX; Cambridge, Mass., USA: Blackwell Science.

Sokal, Robert R., and P. H. A. Sneath (1963), Principles of numerical taxonomy, A Series of books in biology. San Francisco,: W. H. Freeman.

Sterelny, Kim (1999), “Species as evolutionary mosaics”, in R. A. Wilson (ed.), Species, New interdisciplinary essays, Cambridge, MA: Bradford/MIT Press, 119-138.

Strickland, Hugh. E., John Phillips, John Richardson, Richard Owen, Leonard Jenyns, William J. Broderip, John S. Henslow, William E. Shuckard, George R. Waterhouse, William Yarrell, Charles R. Darwin, and John O. Westwood (1843), “Report of a committee appointed “to consider of the rules by which the nomenclature of zoology may be established on a uniform and permanent basis””, Report of the British Association for the Advancement of Science for 1842:105-121.

Templeton, Alan R. (1989), “The meaning of species and speciation: A genetic perspective”, in D Otte and JA Endler (eds.), Speciation and its consequences, Sunderland, MA: Sinauer, 3-27.

Turesson, Göte (1922), “The species and variety as ecological units”, Hereditas 3:10-113.

Van Valen, L (1976), “Ecological species, multispecies, and oaks”, Taxon 25:233-239.

Wagner, Warren H. (1983), “Reticulistics: The recognition of hybrids and their role in cladistics and classification”, in N. I. Platnick and V. A. Funk (eds.), Advances in cladistics, New York: Columbia Univ. Press, 63-79.

Waples, R S (1991), “Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the Endangered Species Act”, Marine Fisheries Review 53:11-22.

Wheeler, Quentin D., and Rudolf Meier, eds. (2000), Species concepts and phylogenetic theory: a debate. New York: Columbia University Press.

Wheeler, Quentin D., and Norman I. Platnick (2000), “The phylogenetic species concept (sensu Wheeler and Platnick)”, in Quentin D. Wheeler and Rudolf Meier (eds.), Species concepts and phylogenetic theory: A debate, New York: Columbia University Press, 55-69.

Wiley, E. O. (1978), “The evolutionary species concept reconsidered”, Systematic Zoology 27:17-26.

—— (1981), “Remarks on Willis’ species concept”, Systematic Zoology 30:86-87.

Wilkins, John S. (2003), “How to be a chaste species pluralist-realist: The origins of species modes and the Synapomorphic Species Concept”, Biology and Philosophy 18:621-638.

Wu, Chung-I (2001a), “Genes and speciation”, Journal of Evolutionary Biology 14 (6):889-891. —— (2001b), “The genic view of the process of speciation”, Journal of Evolutionary Biology 14:851-865.

LINKS

GENETIC SPECIES  CONCEPT 

–>  Baker, R. J., and R. D. Bradley. 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy 87(4):643-662.                                                              http://www.mammalogy.org/uploads/Baker%20and%20Bradley%202006.pdf

 –>  Aardig onderzoek waarbij 2 soorten toch 1 soort blijkt te zijn                http://www.tandfonline.com/doi/full/10.1080/02724634.2013.782875#tabModule

CEL en CELLEER

°

_

Celleer —doc archief

cellcycle_part1_ned  pdf 

intercellular communications  pdf 

Prokaryote cel

Kernwoorden  

Biologie, Biotechnologie,   , , , , ,Nanotechnologie,

°

woensdag 4 december 2013  Kennislink

De vijf mysteries van de cel

Jongleren met evenwicht

HeaderDeze publicatie is onderdeel van thema ‘leven bouwen met moleculen’. . Meer…

Zonder het vermogen van moleculen om zichzelf te organiseren zou jij niet bestaan. In de natuur zie je het overal: verschillende moleculen klitten samen tot onderdelen van cellen, die onderdelen organiseren zich op hun beurt weer tot complete cellen. Cellen vormen weefsels, weefsels vormen organen, en organen vormen organismen. Hoe ver komen chemici met het imiteren van die werkwijze?

De machinerie van de biologische cel is tot in detail bekend. Tenminste, als we kijken naar de kennis die een paar eeuwen celonderzoek heeft opgeleverd. Op het allerkleinste niveau is de cel echter een mysterieus terra incognita.

Kennislink neemt de cel in vijf artikelen onder de loep.

 

Nog meer weten over de cel? driedelige BBC-serie The Cell op Holland Doc 24.

Holland Doc 24 is hét documentaireplatform van de publieke omroep. Het bestaat uit het televisieprogramma Holland Doc op Nederland 2, Holland Doc Radio op Radio 1, het digitale kanaal Holland Doc 24 en de website hollanddoc.nl.

Complete bibliotheken zijn vol­ geschreven over de boeiendste machinekamer ter wereld: de cel. Van wand tot kern is de cel grotendeels in kaart gebracht. Alleen de kleinste schakels wachten nog op ontdekking, maar dat is slechts een kwestie van tijd. Althans, zo lijkt het als je afgaat op de enorme stroom aan ontdekkingen die celbiologen letterlijk dagelijks bekendmaken.

Toch zijn enkele fundamentele eigenschappen van de cel nog nauwelijks bekend, terwijl die wel het gedrag van de cel in hoge mate bepalen. Cellen zijn zo complex en eigenzinnig dat het nagenoeg ondoenlijk is ze natuurgetrouw te onderzoeken.

Cell_nucleus

Een impressie van slechts enkele processen in de cel. Wikimedia Commons

De ontelbare regelnetwerken die dwars door elkaar lopen, concentraties enzymen waar de industrie een puntje aan kan zuigen, de willekeur van chemische reacties. Stuk voor stuk zijn het gebieden waar wetenschappers hun hoofden dagelijks over breken. Veelal technologische beperkingen zorgen ervoor dat de werking van de biologische cel voorlopig nog een aantal mysteries huisvest. Kennislink duikt in vijf aspecten van de cel waar wetenschappers nog wel even zoet mee zijn.

°

1.

Jongleren met evenwicht

( een bewerking van een eerder artikel dat in NWT Magazine is verschenen.)

Biologie was eeuwenlang het domein van fysiologen, ecologen en artsen. We zijn er inmiddels achter dat op het kleinste niveau van een biologische cel niets anders gebeurt dan chemische reacties. Dus zou het ook logisch zijn om die reacties op een chemische manier te bestuderen. Maar als we onze chemische theorieën op de biologische cel proberen toe te passen levert dat aanzienlijke problemen op.

De reacties zijn namelijk fundamenteel anders dan de reacties die normaal gesproken in een chemisch lab worden bestudeerd. Chemici houden van reacties die ofwel tot een product leiden, ofwel naar een chemisch evenwicht toe lopen. In het eerste geval gooi je simpel gezegd stoffen A en B bij elkaar en wacht totdat deze in product C zijn omgezet. In het tweede geval, de evenwichtssituatie, worden er uit product C ook weer de stoffen A en B gevormd. Chemici spreken dan van een chemisch evenwicht, waarbij de stofconcentratie van A, B en C uiteindelijk gelijk blijven.

Jongleur

Een biologische cel houd geen vijf ballen in de lucht, maar duizenden. Connormah

Steady state

“Maar wat gebeurt er nou in de cel?” zegt Wilhelm Huck, hoogleraar Fysisch Organische Chemie van de Radboud Universiteit in Nijmegen. “Totaal iets anders.” De chemie van de cel doet namelijk geen van beiden. Er is geen eindproduct maar evenmin een evenwichtstoestand. Immers, als we niet eten gaan we dood; er moet constant energie worden aangevoerd voor de processen in een cel.

Huck vergelijkt de cel daarom graag met een jongleur die wel duizenden ballen tegelijk in de lucht houdt. Stopt hij daar geen energie meer in dan stort het systeem in en eindigen de ballen in hun ‘evenwichtstoestand’ op de grond.

De celinhoud, met bijvoorbeeld de duizenden eiwitten, is wel altijd op zoek naar een evenwicht, maar zal dat chemisch gezien nooit bereiken. En die toestand waarin alle reacties elkaar in evenwicht proberen te krijgen maar wat ze niet lukt wordt steady state genoemd. ‘En deze niet-evenwicht, dynamische situatie van de cel is precies de kern van het probleem voor wetenschappers, omdat er geen goede methoden zijn om zulke systemen te bestuderen,’ sprak Huck in zijn oratie voor de Radboud Universiteit in 2011. Als voorbeeld daarvoor haalde Huck een onderzoek aan wat hij deed aan actine-netwerken in de cel.

Eén molecuul, meerdere evenwichten

Actine is een eiwit dat in een vrij grote concentratie in het cytoplasma van de cel zit, en dat lange, stabiele ketens kan vormen die de cel stevigheid geven. Huck liet cellen in meer of mindere mate die actinenetwerken opbouwen, door ze op verschillende ondergronden te laten groeien.

Als actine echter wordt gebruikt in het ene evenwicht (het opbouwen van de netwerken) kunnen diezelfde actine-bouwstenen niet meer gebruikt worden in andere evenwichten. Dit betekent dat het ene evenwicht onder invloed van het andere evenwicht verschuift. Huck zag dat het veranderen van het tweede evenwicht een nieuwe reactieketen veroorzaakte: er gingen meer signaaleiwitten naar de celkern om daar specifieke genen te activeren. En zoiets gebeurt vaak. Je kunt er dan ook bijna zeker van zijn dat een bepaald (signaal)molecuul in verschillende evenwichten is betrokken.

Netwerk van moleculen in een cel

Pathway

Het netwerk van verschillende moleculen dat betrokken is bij de verspreiding van het HIV-virus.

 Je kunt er donder op zeggen dat bepaalde moleculen in een cel in verschillende ‘reactie-paden’ betrokken zijn. Het totaal vormt een ingewikkelde puzzel voor wetenschappers. Elledge Lab/Harvard Medical School

“Kijk je nu naar de concentratie van het vrije actine, dan kijk je dus eigenlijk naar een aantal verschillende processen en dat maakt het onderzoek ingewikkeld”, zegt Huck. Want de wetenschapper wil in zijn proefopstelling eigen alles constant houden, behalve de variabele die hij onderzoekt. De aard van de cel maakt dat nu net onmogelijk. We kunnen voor dit probleem ook naar computer grijpen. In feite kun je alle netwerken doorrekenen. “Daar zijn al mensen mee bezig, maar dat staat nog in de kinderschoenen,” zegt Huck.

°

2.-

File in de cel

(een bewerking van een eerder artikel dat in NWT Magazine is verschenen)

2377661863_a6db865ca7_b

Afbeelding: © M_Y

Zie hier maar eens een pakketje op te halen per vrachtwagen. M_Y

Stel je een druk stadscentrum voor. Je zit in een vrachtwagen en moet een pakketje ophalen. Daarvoor moet je de vrachtwagen precies in een laadsluis rijden aan de achterzijde van een winkel. Het centrum krioelt van voetgangers, fietsers, auto’s en andere vrachtwagens. Je rijdt rond en… hebt totaal geen idee waar je heen moet. Wat is de kans dat het pakketje wordt opgehaald?

Dit is ongeveer de situatie in de cel. Waarin de vrachtwagen een groot eiwit voorstelt dat ergens aan een receptor – de laadsluis van de winkel – moet koppelen om daar een binding met een signaalmolecuul – het pakketje – aan te gaan. Bovendien is het eiwit bijna niet vooruit te branden doordat het continu botst met andere moleculen: het ‘verkeer op straat’.

Alles behalve vloeibaar

Tot wel 40 procent van het volume van een cel wordt ingenomen door eiwitten en dat beïnvloedt de vloeibaarheid van het inwendige van de cel sterk; het is eerder een stroperige brij dan een vloeibare massa. Die drukte zorgt voor een fenomeen dat in het Engels ‘crowding’ wordt genoemd. Zo op het eerste gezicht lijkt dit een enorm probleem voor de logistiek binnen een cel. Geen economie zou ook maar één cent winst maken als alle vrachtwagens willekeurig door het drukbevolkte omgeving gingen rijden, in de hoop op de juiste plek uit te komen. En toch werkt de cel zo; maar hoe?

Astronaut vrij in de ruimte

Astronaut-eva

Bruce McCandless maakte in 1984 een ruimtewandeling waarbij hij niet direct verbonden was aan de Spaceshuttle. Hij zweefde volledig los in de ruimte. 

Afbeelding: © NASA

“Nou, misschien zou de cel zelfs niet eens kunnen werken zonder het fenomeen crowding”, zegt Wilhelm Huck, hoogleraar Fysisch Organische Chemie van de Radboud Universiteit in Nijmegen. “Neem een andere vergelijking, precies het tegenovergestelde van een drukke stad: een astronaut die werkzaamheden verricht aan de buitenkant van een ruimtestation. Stel hij raakt los van het station, dan is de kans dat hij vanzelf weer terugkomt om zijn werkzaamheden af te kunnen maken bijna nul. Hij zweeft weg van zijn doel, het lege universum in. In een vloeibaar medium gebeurt in feite hetzelfde. Als een eiwit los raakt van zijn doel, is de kans dat hij nogmaals zijn doel treft klein. In een drukke omgeving is de kans dat een eiwit weer gewoon terug komt op de plek waar hij begon juist erg groot.”

Een voordeel dus, dat crowding. Maar wel één waar de cel rekening mee moet houden. “Waarschijnlijk doet de cel dat door componenten die later een reactie met elkaar moeten aangaan, bij elkaar in de buurt te fabriceren”, zegt Huck. Je hoeft dan niet met je vrachtwagen het hele stadscentrum door te ploeteren, maar je kunt gewoon naar de buurman rijden. Mocht een eiwit dan echt nodig zijn aan de andere kant van de cel, dan heeft de cel altijd nog een actief transportnetwerk tot zijn beschikking [red: meer daarover in het volgende deel van deze artikelreeks].

Crowding heeft echter nog meer voordelen. Wetenschappers ontdekten bijvoorbeeld dat de vouwing van eiwitten naar hun functionele vorm sneller gaat als botsende buren een handje helpen. Hetzelfde geldt voor het binden van twee moleculen, vaak de langzaamste stap in een chemische reactie, dat over het algemeen sterk versneld wordt in een crowded omgeving.

Experimenteren met verdunningen

“Toch vreemd dat crowding al 30 jaar bekend is, maar dat wetenschappers er nauwelijks rekening mee houden in experimenten”, zegt Huck. Vrijwel alle kennis van eiwitreacties is gebaseerd op verdunde oplossingen. Wetenschappers onderzoeken normaalgesproken eigenschappen van eiwitreacties in reageerbuizen, waar de celreacties in een verdunde, niet-crowded omgeving worden overgedaan. En aangezien crowding zo’n grote invloed kan hebben op het gedrag van eiwitten is dat op z’n minst gezegd opmerkelijk. Daarentegen ook wel weer logisch, want het is veel te duur om eiwitten in zo’n grote hoeveelheid te maken dat de concentratie overeenkomt met die in het celinterieur.

Druppeltjes voor celonderzoek

Figure_2

Professor Wilhelm Huck van de Radboud Universiteit gebruikt dergelijke druppeltjes om onderzoek te doen naar processen in de cel. De inhoud van de druppeltjes, die in grote getalen door kleine buisjes worden geleid, kan precies worden beïnvloed.

Afbeelding: © Wilhelm Huck/Radboud Universiteit

Huck werkt zelf echter aan een nieuw systeem waarin hij de inhoud van een cel kan vangen en controleren in waterdruppeltjes van een picoliter, oftewel 0,000000000001 liter. Zijn onderzoeksgroep in Nijmegen doet als één van de eerste in de wereld onderzoek met deze opstelling. “We kunnen zo eiwitten onderzoeken in natuurlijke drukke omstandigheden”, laat hij weten. Als het ware de vrachtwagen in het drukke stadscentrum.

Lees meer over het onderzoek van Wilhelm Huck:

Moleculen in de cel_slideshow

Achtergrond 28 oktober 2013

Programmeerbare chemische reacties

Normaal gesproken zijn chemische reacties overzichtelijk. Je voegt bijvoorbeeld twee stoffen bij elkaar die een reactieproduct vormen. Dat staat in schril contrast met wat de natuur chemisch gezien klaarspeelt, waar duizenden stoffen tegelijkertijd met elkaar reageren om uiteindelijk complex gedrag mogelijk te maken. “En precies dat zou wij chemici maar al te graag nadoen,” zegt Wilhelm Huck van de Radboud Universiteit, “we willen eigenlijk kunnen programmeren met chemische reacties.”

°

3.-

De snelwegen van de cel

Netwerk van actine_slideshow

Afbeelding: © Vrije Universiteit/Roos Lab 

Transport vormt een probleem in de cel. Als er geen oplossing zou zijn bedacht op de zeer trage diffusie van grote eiwitten door de cel, dan zouden ze vrijwel nooit op de plek belanden waar ze nodig zijn. En ook het doorgeven van signalen van bijvoorbeeld de kern naar de celwand zou een hele opgave zijn. De cel heeft daarom een enorm netwerk waarlangs stoffen actief getransporteerd worden, als het ware de snelwegen van de cel. Het onderzoeken van de specifieke locaties van netwerken van eiwitten in de cel is lastig, want met bestaande fluorescentietechnieken is slechts een klein aantal eiwitten te volgen.

De gewone bezorging of de dure maar snelle expressverzending? Dit is niet alleen een overweging die jij maakt als je een pakketje wilt versturen. Maar de cel doet precies hetzelfde op moleculair niveau met moleculen die op een bepaalde plek nodig zijn in de cel. Eiwitten die in de celkern worden gemaakt, kunnen bijvoorbeeld nodig zijn in de buurt van het ‘verre’ celmembraan.

Two_cups_of_tea_with_spoon

Hang een theezakje in een kop heet water voilà: diffusie. Naama ym

Nu is er zoiets als diffusie. Een ‘gratis’ kracht die ervoor zorgt dat moleculen van hetzelfde soort zich onder invloed van thermische bewegingen vanzelf verspreiden in een volume. Denk hierbij aan het proces dat gestaag je kopje heet water omtovert tot thee op het moment dat je er een theezakje in hangt.

Handig, die diffusie, maar het is niet afdoende voor de cel. Door de drukte in de cel duurt het lang voordat grote moleculen zich verspreiden. Bacteriën hebben daar met hun kleine afmetingen (zo rond de micrometer) minder last van, maar de bezorgtijden in grote eukaryote cellen van hogere organismen (tot dertig micrometer), lopen dusdanig op dat het functioneren van de cel onmogelijk wordt. De cel moet een oplossing hebben: een ware expressbezorging in de cel.

Betaalde bezorging

Die koeriersdienst voor grote moleculen vindt plaats met blaasjes die over een netwerk van buisjes vooruit worden getrokken door speciale motoreiwitten. Maar net zoals bij de echt koerier zijn daar kosten aan verbonden. En de cel betaalt niet in euro’s maar in kostbare energiemoleculen als adenosinetrifosfaat.

Wanneer een gistcel al zijn 15.000 verschillende eiwitten via deze manier zou ‘versturen’, zou dat naar schatting zo’n 60 procent van het totale energiebudget van de cel kosten. En dat kan hij zich niet veroorloven. Een eukaryotische cel gebruikt maar zo’n vier procent van zijn energie voor transport over dit snelle netwerk.

De expressbezorging van de cel in actie. Deze animatie laat zien hoe een motoreiwit een blaasje vol andere eiwitten vooruit trekt over een transportbuis.

Een groot aantal moleculen moet het dus enkel stellen met diffusie. En daar is eigenlijk niet zo veel mis mee. Voor hele kleine deeltjes is de diffusie zelfs sneller dan het actieve transport, maar met de grootte van de deeltjes loopt de diffusietijd ook snel op. Daarom heeft de cel een andere handigheid in petto.

Kettingreacties in beeld

Zogenoemde reactiediffusie-netwerken zijn in staat snel en gericht signalen te versturen door een keten van reagerende stoffen te vormen. In dat netwerk zitten eiwitten die een reactie versnellen waarvan het product weer naburige eiwitten activeert op deze manier via verschillende schakels razendsnel een signaal kunnen doorgeven.

Er is niet veel wetenschappelijke literatuur over reactiediffusie. Dat is niet gek vindt Wilhelm Huck, hoogleraar Fysisch Organische Chemie van de Radboud Universiteit Nijmegen: “Er zijn relatief weinig mensen bezig met dit onderzoek. Als je dit soort systemen wilt analyseren moet je nu eenmaal precies kunnen volgen waar moleculen zich bevinden in de cel. En daar zitten technisch gezien allerlei haken en ogen aan.”

Green Fluorescent Protein

Gfp___balachandar

Afbeelding: © balachandar, Flickr.com

Een paar buisjes met lichtgevend green fluorescent protein. balachandar, Flickr.com

We kunnen moleculen wel labelen met green fluorescent protein (gfp), een ‘geleend’ eiwit uit een lichtgevende kwal. Groot voordeel: met een ‘gewone’ lichtmicroscoop worden stoffen binnen de cel zichtbaar. Nadeel: het gfp-label kan de snelheid en de reactiviteit van een molecuul beïnvloeden.

Bovendien is het op deze manier nog steeds praktisch onmogelijk een individueel eiwit te volgen. Alleen ophopingen en dus grote concentraties van hetzelfde eiwit zijn zo zichtbaar. En je kunt maar één of hooguit een paar soorten moleculen tegelijk volgen (door ze anders te labelen). Zodra je een heel netwerk in één keer wil visualiseren loop je dus al tegen de grenzen van deze techniek aan.

Daarom werken wetenschappers hard aan andere visualisatiemanieren, bijvoorbeeld nanosensoren. Deze kunnen in de cel worden ingebracht en zenden licht uit als ze hun target tegenkomen. Deze techniek staat nu nog in de kinderschoenen maar kan wel de weg vrijmaken voor het moeilijke maar veelbelovende avontuur van het doorgronden de signaalnetwerken op celniveau.

Bronnen

  • Grzybowski B. A. et al., Reaction-diffusion systems in intracellular molecular transport and control, Angewandte Chemie (juni 2010), DOI:10.1002/anie.200905513

(Dit artikel is een bewerking van een eerder artikel dat in NWT Magazine is verschenen.)

De opbergdoos van het DNA

DNA in een doosje_slideshow

Wellicht een van de meest onderzochte moleculen in de cel is DNA. De lange streng bevat alle genetische informatie en bevindt zich in de kern van de cel. Toch is het voor wetenschappers nog grotendeels gissen naar de manieren waarop de reusachtige moleculen zijn opgeborgen in de relatief kleine celkern. En dat terwijl delen van het DNA continu worden ‘afgelezen’ door een groot aantal eiwitten.

Je genoom is vastgelegd in een langgerekt molecuul: het DNA. Uitgerold komt de lengte van het DNA van een enkele cel in de orde van meters te liggen. Maar hoe bewaart de cel dat in een kern waarvan de diameter een miljoenste van die lengte is? En hoe kan er dan nog steeds informatie worden afgelezen?

door 

We weten dat de streng tijdens de celdeling keurig geordende chromosomen vormt, die ook waarneembaar zijn onder een microscoop. Verder is bekend dat DNA zich rondom zogenoemde histonen kan wikkelen. Dat zijn eiwitten die de speciale taak hebben om de streng compacter te maken. Er zou zo een relatief ‘dikke’ DNA-worst ontstaan die ongeveer 30 nanometer (zo’n drieduizend keer dunner dan een gemiddelde haar) dik is.

“Als we een klein stuk DNA in een reageerbuis stoppen kunnen we die worst ook echt waarnemen,” laat Gijs Wuite weten, hij is hoogleraar Fysica van Levensprocessen aan de Vrije Universiteit in Amsterdam. “Of zoiets in de cel ook altijd gebeurt is maar zeer de vraag.”

Organisatiestappen_van_dna

De bekende dubbele helix van het DNA (onder) rolt zich op rondom histoneiwitten die zogenoemde nucleosomen gaan vormen (midden). Zij rollen zich op hun beurt weer op tot telomeren die bij elkaar gepakt het chromosoom (rechtsboven) vormt. 23 paren van deze chromosomen vormen samen jouw genetische materiaal dat in de kern van de cel is opgeslagen. National Human Genome Research Institute

Er is van een hoop eiwitten vastgesteld dat ze een interactie aangaan met het DNA. “Die reacties kunnen in het lab onder gecontroleerde omstandigheden worden nagebootst,” zegt Wuite. Voor bijvoorbeeld het kopiëren van het DNA gebruikt de cel tientallen eiwitten die met elkaar een kopieermachine vormen en het DNA aflopen. “Maar als we ons de vraag stellen hoe ze dat precies doen, dan tasten we weer meteen in het duister.”

G-quadruplex_fluorescentie

Fluorescentie kan bepaalde eiwitten zichtbaar maken. University of Cambridge

De onderzoeksgroep van Wuite doet fluorescentie-experimenten met eiwitten die ze aan het DNA laten binden. “We hebben daarvoor iets wat we een ‘optische pincet’ noemen. Tussen de pincetpunten kunnen we DNA spannen en daar eiwitten aan toevoegen. Zo kun je bijvoorbeeld zien hoe lang die eiwitten op het DNA blijven zitten.”

Dat is overigens niet makkelijk, eiwitten met fluorescente labels zenden maar weinig licht uit en ze blijven vaak maar een paar seconden op het DNA zitten. “Het waarnemen van die eiwitten is als een spel van een sportfotograaf die met een zo lang mogelijk sluitertijd toch nog een scherpe foto wil maken,” zegt Wuite.

Trekken aan het DNA

Wie ook aan DNA-strengen trekt is Cees Dekker, hoogleraar Moleculaire Biofysica aan de Technische Universiteit Delft. “Wij spannen het DNA ook op in zo’n optische pincet. Aan een derde pincetpunt hangen we dan een eiwit waarvan we vermoeden dat het een interactie met het DNA aangaat. Door het in de buurt te brengen van de streng kunnen we ook echt voelen of dat klopt. Bovendien kunnen we de krachten meten die er spelen, die overigens erg klein zijn, in de orde van piconewton [red: 10-12 newton].”

Ook Dekker beaamt dat we nog lang niet alles weten: “Aan de ene kant weten we al behoorlijk wat van de processen waarbij één eiwit iets doet op het DNA. Maar hoe een heel gebied in het DNA (met verschillende genen) actief kan worden terwijl anderen dat niet zijn, is nog onduidelijk.”

Wuite vult aan: “Ik denk dat er nog een lange weg voor ons ligt, voordat we alles van het DNA begrijpen. Boven die worst van 30 nanometer zitten nog twee of drie organisatorische stappen waar we nauwelijks iets vanaf weten. Ik denk dat 80 procent van wat er nu over in de boeken geschreven staat fantasie is.”

(Dit artikel is een bewerking van een eerder artikel dat in NWT Magazine is verschenen.)

Onberekenbaar gedrag

Menselijke borstcellen in clusters_slideshow

Afbeelding: © Drs. Sun-Young Moonlee en Mina Bissell

Dat cellen tot één soort behoren wil allerminst zeggen dat ze zich precies hetzelfde gedragen. Zelfs cellen die in dezelfde omgeving met dezelfde geschiedenis en hetzelfde genoom zijn opgegroeid kunnen totaal van elkaar verschillen. De oorsprong van die verschillen zit hem in het willekeurige gedrag van moleculen in de cel. In het huidige onderzoek wordt hier nauwelijks rekening mee gehouden, en veel onderzoek is gebaseerd op het ‘gemiddelde’ gedrag van een groep cellen.

Geen cel is hetzelfde. Zelfs niet wanneer ze precies hetzelfde genetisch materiaal hebben, even oud zijn en dezelfde geschiedenis kennen. Dat komt omdat de willekeurige bewegingen van moleculen voor variaties tussen cellen zorgen. Geen probleem voor de natuur, maar voor het begrijpen van de cel is dit kansspel lastig.

door 

Neem een groot aantal levende cellen, verpletter ze en kijk wat je tegenkomt in de dampende resten. Dat is in een notendop hoe biochemici de cel momenteel bestuderen. Wat ze dan eigenlijk bekijken is de gemiddelde compositie de cellen op dat fatale moment. Er is veel te ontdekken op deze manier, maar toch heeft deze aanpak beperkingen voor het begrijpen van de cel.

Van het stofje in de cel dat je wilt onderzoeken meet je zo nooit de concentratie in één individuele cel. “Ik denk echt dat er in het huidige onderzoek te weinig rekening wordt gehouden met het kansspel waarin elke cel zich eigenlijk bevindt,” zegt Frank Bruggeman, die is verbonden aan de Vrije Universiteit en het Centrum voor Wiskunde en Informatica in Amsterdam.

Een kansspel. Daarmee bedoelt hij dat alle moleculaire interacties op toeval gebaseerd zijn. De bewegingen van een molecuul zijn namelijk maar lukraak. Tijdens een trip door de cel botst zij ontelbare keren met buurmoleculen, kan een reactie aangaan, weer loskoppelen, opnieuw botsen en toevalligerwijs weer precies uitkomen op de plek waar ze even daarvoor ook was. Omdat deze dronkemanswandeling totaal willekeurig is wordt het gedrag van een cel ook willekeurig. Dat gedrag wordt ook wel de stochastisch genoemd.

Brownse_beweging

Simulatie van de zogenoemde brownse beweging van een molecuul, met in (licht)blauw steeds fijnere stappen van de simulatie. Het zijn dergelijke willekeurige bewegingen die moleculen in een cel maken. Di Gama

Hetzelfde maar toch heel anders

Nu dringt die stochasticiteit niet door op alle processen in de cel. Bruggeman legt uit: “Het heeft alles te maken met het aantal moleculen dat meedoet in een reactie. Neem bijvoorbeeld het aflezen en tot expressie brengen van genen in het DNA. Daar zijn soms maar tien (identieke) moleculen bij betrokken. Het toevalsgedrag van dat tiental maakt het hele proces stochastisch, in tegenstelling tot celreacties die bij de miljoenen of miljarden plaatsvinden. Hierdoor vindt de expressie van een gen soms in uitbarstingen plaatst, met daartussen periodes waarin er helemaal niets gebeurt. Dan slaagt geen van die tien moleculen er tijdens hun dronkemanswandeling in op de juiste plek te binden aan het DNA.”

Expressie van genen in uitbarstingen heeft erg veel gevolgen voor het gedrag van losse cellen. Het kan zijn dat de ene cel een grote voorraad eiwitten met een speciale functie heeft terwijl die in zijn buurman helemaal niet voorkomen. Cellen die in dezelfde omgeving, met dezelfde geschiedenis en hetzelfde genoom zijn opgegroeid kunnen zo toch totaal van elkaar verschillen. Maar precies die variatie wordt niet opgepikt in de veel gebruikte onderzoeksmethodes.

Celclusters_menselijke_borst

De menselijke borstcellen lijken misschien hetzelfde, maar onderling kunnen ze grote verschillen vertonen door het willekeurige gedrag van de celchemie. Drs. Sun-Young Moonlee en Mina Bissell

Oppassen voor valse signalen

Bruggeman geeft een voorbeeld. Nobelprijswinnaars Jaques Monod [1] en François Jacob[2] ontdekte halverwege de vorige eeuw dat een bacteriekolonie die twee soorten suikers krijgt, glucose [3] en lactose [4], eerst glucose opeet en dan pas lactose. “Maar toen er veel later pas naar individuele cellen werd gekeken zag men dat er wel degelijk cellen tussen zitten die al meteen op lactose groeien. Wat gemiddeld geldt voor de populatie hoeft dus helemaal niet te gelden voor individuen.”

Er zijn nog veel vraagtekens te zetten bij het stochastische gedrag van cellen. Hoe gaat een cel bijvoorbeeld om met de wispelturig doorgegeven signalen vanmembraanreceptoren [5] naar de celkern? Hoeveel glucosemoleculen moeten er binden aan glucosereceptoren aan de buitenkant van de cel, voordat de celkern een duidelijk signaal ‘er is glucose’ doorkrijgt? De celkern moet ook rekening houden met valse signalen door willekeurige moleculaire interacties.

500x_deckcardsfanned

“Het zou echt een revolutie teweeg brengen als we dit soort processen goed zouden kunnen volgen in de cel,” zegt Bruggeman. “Maar je moet dan letterlijk moleculen tellen. En dat is nu praktisch onmogelijk voor meerdere moleculen in één experiment. Als een experimenteel systeem bovendien uit meer dan vier of vijf interacterende componenten bestaat komen we er al niet meer uit met ons gezond verstand. En dat is echt iets wat mij mateloos fascineert, want de cel lijkt zijn kaarten moeiteloos zo te kunnen schudden dat hij het kansspel om overleving steeds wint.”

 

Bronvermelding

  1. Jaques Monod http://nl.wikipedia.org/wiki/Jacques_Monod
  2. François Jacob http://nl.wikipedia.org/wiki/Fran%C3%A7ois_Jacob
  3. Glucose http://nl.wikipedia.org/wiki/Glucose
  4. Lactose http://nl.wikipedia.org/wiki/Lactose
  5. Membraanreceptoren http://nl.wikipedia.org/wiki/Receptor_(biochemie) 

.-

Genetische tijdmachine verklaart complexe evolutie

Wetenschappers gebruiken ‘moleculair tijdreizen’ om het ontstaan van ingewikkelde eiwitten te achterhalen.

  • Door: Chiel Versteeg (Noorderlicht)

Moleculaire machines zijn een favoriet anti-evolutie argument van creationisten. De ingewikkelde eiwitmachines moeten simpelweg wel ontworpen zijn door een hogere macht. (= IC argument van Behe )

Een moleculair reisje door de tijd laat iets anders zien.

Zoom
© NOchotny
Een V-ATPase moleculaire machine. Het paars gekleurde gedeelte is de ring van eiwitten die de wetenschappers hebben onderzocht.

Veel van wat cellen doen wordt uitgevoerd door ‘moleculaire machines’. Dit zijn ingewikkelde, gespecialiseerde eiwitten die voor beweging of energie zorgen.

Creationisten zien het bestaan ervan als bewijs dat leven ontstaan is door een scheppingsdaad, en niet door evolutie. Volgens hen is door ergens naar te kijken meteen duidelijk of het een product van een intelligent ontwerp is (dit wordt ook het horlogemakerargument genoemd). Nu zijn moleculaire machines volgens creationisten zo ingewikkeld en slim dat ze wel ontworpen moeten zijn. Een onderzoek gepubliceerd in Nature bewijst dat de moleculaire machines wel degelijk door evolutie kunnen ontstaan, zonder dat er een ontwerper aan te pas komt.

zie ook —> ZWEEPSTAART-MOTOR 

https://tsjok45.wordpress.com/2012/10/22/flagellum/

De universiteiten van Oregon en Chicago werkten onder leiding van Joseph Thornton samen aan een onderzoek naar de vraag hoe complexe moleculaire machines ontstaan via evolutie. De wetenschappers richtten zich op een enkele moleculaire machine, de V-ATPase proton pomp, die er voor zorgt dat de zuurgraad in de cel optimaal blijft. Een onderdeel van deze machine is een ring die waterstofionen vervoert. Bij de meeste organismen bestaat deze ring uit twee verschillende soorten eiwitten, maar bij paddenstoelen is er een derde bijgekomen. Het is een goed voorbeeld van hoe evolutie voor ingewikkeldere systemen kan zorgen. De wetenschappers hebben deze ring dan ook gebruikt voor hun onderzoek.

Moleculair tijdreizen

Het team wetenschappers maakte gebruik van wat zij ‘moleculair tijdreizen’ noemen. Computers analyseerden de genen van moderne eiwitten en berekenden het meest waarschijnlijke vooroudergenen. Zo werd er in het verleden gekeken. Met behulp van deze methode konden ze vaststellen dat de complexiteit van moleculaire machines simpelweg veroorzaakt is door een serie normale evolutieprocessen. Het team verwacht dat er in de toekomst ook naar de evolutie van andere moleculaire machines wordt gekeken op deze wijze.

Met behulp van de vooroudergenen uit het computermodel hebben ze de eiwitten gemaakt zoals die waren voordat er een derde eiwit bij kwam. Vervolgens konden ze de evolutie van de moleculaire machine zelf meemaken. Door kunstmatig voor mutaties te zorgen konden de wetenschappers er stap voor stap achter komen welke genetische verandering de machine complexer heeft gemaakt.

Uiteindelijk bleek een duplicatie van een van de twee voorouderlijke eiwitten de schuldige te zijn. Een mutatie zorgde er voor dat het eiwit beperkt werd in de plaatsen die het kon innemen in de moleculaire machine. Hierdoor werd het derde eiwit behouden. Het is hierom dat paddenstoelen nu een specifieke configuratie met drie eiwitten hebben in de V-ATPase moleculaire machine. De eiwitten werden zelf dus niet complexer, maar het werden er wel meer. Hierdoor werd de moleculaire machine een ingewikkelder geheel.

Niet bijzonder

Volgens de wetenschappers was er maar een enkele, weinig bijzondere mutatie nodig voor het extra eiwit. Genduplicatie komt vaak voor in cellen, en er treden fouten op bij het kopiëren van het DNA. ‘Moleculaire machines zijn niet het resultaat van precisieontwerp. Het zijn groepen moleculen die aan elkaar plakken, bij elkaar geharkt tijdens evolutie door knutselwerk van genen, willekeurige mutatie en een beetje geluk. Ze zijn behouden gebleven omdat ze onze voorouders hielpen te overleven’, aldus Joseph Thornton in het persbericht van de Universiteit van Chicago.

Bron:

Gregory C. Finnigan, Victor Hanson-Smith, Tom H. Stevens en Joseph W. Thornton. Evolution of increased complexity in a molecular machine. In: Nature.

Voorbeeld van moleculaire machines in een cel. (ongerelateerd aan het artikel)