DONKERE MATERIE


trefwoorden

,

woensdag 17 april 2013

door

Net sluit zich iets verder om donkere materie

Wetenschappers achter het Super Cryogenic Dark Matter Search-experiment (SuperCDMS) laten weten dat ze een deeltje op het spoor zijn dat wel eens de lang gezochte donkere materie kan zijn.

Nadat begin deze maand al hoopvolle berichten verschenen van het team van de AMS-detector, lijkt het net om donkere materie zich nu ietsjes steviger te sluiten. In het kamp van deeltjesdetector SuperCDMS zegt men aanwijzingen te hebben gevonden voor het bestaan van een deeltje dat voldoet aan de beschrijving van zogenoemde WIMP’s. Deze vermeende Weakly Interacting Massive Particles zouden slechts zelden een interactie aangaan met normale materie en zijn kandidaat nummer één om door te gaan voor donkere materie.

Silicion_detector

Interacties van donkere materie-deeltjes zouden in dit soort silicium schijven gedetecteerd zijn. Texas A&M University

De wetenschappers melden dat de deeltjes zijn gedetecteerd met een zekerheid van 99,8 procent. Vrijwel iedereen zou dan de kurk al van de champagne-fles laten springen, maar betrokken deeltjesfysici laten in een persbericht weten dat er nog zeker geen sprake is van een ontdekking. ‘Met deze zekerheid heb je op zijn hoogst een aanwijzing dat je beet hebt.’

Een strenge regel in de deeltjesfysica stelt dat er pas gesproken kan worden van een ontdekking als er een zekerheid van minimaal 99,9999 procent gehaald is. Dat betekent dat als je het experiment een miljoen keer zou herhalen, je gemiddeld slechts één keer een foute conclusie zou trekken. Deze mate van zekerheid werd vorig jaar bijvoorbeeld ook gehanteerd voor de ontdekking van het Higgsdeeltje en ook de WIMP’s zullen daar aan moeten voldoen.

Oude data

De aanwijzingen voor het bestaan van WIMP’s werden gevonden in een dataset die al jaren bestaat. De detector waarmee ze werd gemeten is zelfs al weer afgebroken voor de opbouw van de volgende, betere detector.

De reden dat de wetenschappers ‘oude’ data onder de loep namen is dat ze geïnteresseerd zijn in het vinden van lichte WIMP’s, en die zouden bij uitstek met deze oude detector gevonden kunnen worden. Na het grondig doorspitten van alle data bleken er inderdaad drie keer een proces plaats te hebben gevonden in de detector dat veroorzaakt kan zijn door interacties met donkere materie.

Bulletcluster

Dit sterrenstelsel leverde een bewijs voor donkere materie. NASA

Wat is donkere materie?

Het bestaan van donkere materie is onder andere af te leiden uit de draaisnelheid van sterrenstelsels. Astronomen zien ze namelijk veel sneller ronddraaien dan ze op basis van de aanwezige zichtbare materie kunnen verklaren. De buitenste sterren zouden eigenlijk uit het sterrenstelsel geslingerd moeten worden. Dat doen ze niet en daarom wordt gedacht dat er zich stiekem veel meer materie in sterrenstelsels zit dan zichtbaar is.

Volgens de laatste schattingen zou het universum voor 26,8 procent gevuld zou zijn met donkere materie, daar tegenover staat slechts 4,9 procent ‘normale materie’ waar jij, ik en de zichtbare wereld om ons heen uit zijn opgebouwd. De overige pakweg 70 procent van het universum zou gevuld zijn met donkere energie, een zo mogelijk nog mysterieuzere substantie, die verantwoordelijk wordt gehouden voor de versnelde uitdijing van het heelal.

Slappeling onder de grond

Zoals hun Engelse naam al suggereert reageren WIMP’s (wat in die taal ook gelezen kan worden als ‘slappeling’) nauwelijks met andere materie. En dat maakt de zoektocht extreem lastig, want hoe zie je een deeltje dat niet gezien wil worden?

Om ze toch te vinden zijn er over de hele wereld detectors opgezet. Zo ook CDMS, waarmee de eerste experimenten al tien jaar geleden plaatsvonden. In deze experimenten wordt gebruik gemaakt van detector van halfgeleidend materiaal dat tot vlak boven het absolute nulpunt is gekoeld.

Het idee is dat passerende WIMP’s die toevallig een atoomkern in het materiaal raken voor meetbare trillingen en verplaatsingen van lading zorgen. En hoewel zo’n gebeurtenis vrij zeldzaam is, zou het een kwestie van tijd zijn om het bestaan van WIMP’s uiteindelijk via deze methode te bevestigen.

800px-minos_project_in_soudan_mine

Een van de tunnels van de Soudan-mijn, waar tegenwoordig niet meer naar ijzer wordt gezocht maar onbekende elementaire deeltjes. Wikimedia Commons

Het lastige van deze experimenten is het onderscheiden van interacties van de vermeende WIMP’s en signalen afkomstig van toevallige reacties met andere (bekende) deeltjes. Om deze achtergrondruis te minimaliseren vinden de experimenten een kleine kilometer onder de grond plaats in een oude mijn in de Amerikaanse staat Minnesota. Ze zijn daar ver weggestopt van storende invloeden van buitenaf, zoals kosmische straling.

Verdere zoektocht

De vlag voor de ontdekking van WIMP’s is tot nu toe nog niet uitgegaan. In de tien jaar dat er nu wordt gemeten zijn er vaker dan eens interacties gemeten, maar men heeft nooit met zekerheid kunnen vaststellen dat het om WIMP’s ging. Ook andere detectors slaagden daar tot nu toe nog niet in.

Momenteel ondergaat het CDMS-experiment een upgrade waardoor de detector nog gevoeliger wordt. Daarmee kunnen de wetenschappers in de komende jaren hopelijk de aanwijzing die ze nu hebben omzetten in de echte ontdekking van donkere materie.

Lees verder

Deeltjesdetector is mogelijk donkere materie op het spoor

http://www.kennislink.nl/publicaties/deeltjesdetector-is-mogelijk-donkere-materie-op-het-spoor

10 april 2013 · door Roel van der Heijden

Aanwijzingen voor bestaan van donkere materie ontdekt?

04 april 2013   18

donkere materie rondom de Melkweg

De Alpha Magnetic Spectometer, een instrument dat onlangs op het internationale ruimtestation werd geplaatst, lijkt sporen van donkere materie te hebben waargenomen. Een antwoord op de vraag ‘bestaat donkere materie echt?’ lijkt daarmee binnen handbereik.

Maar voorzichtigheid is geboden. Pas over enkele maanden kan AMS met zekerheid stellen dat de sporen die donkere materie nu achtergelaten lijkt te hebben ook echt aan donkere materie toebehoren.

Positronen
De Alpha Magnetic Spectometer (AMS) werd in 2011 op het internationale ruimtestation geplaatst en heeft eigenlijk maar één missie: zoeken naar bewijs dat donkere materie bestaat. AMS bestudeert daartoe kosmische straling: zeer energetische deeltjes waar de ruimte van doordrongen is. Zo’n twee decennia geleden ontdekten wetenschappers dat in deze kosmische straling bijzonder veel antimaterie zit. De oorsprong van die overvloed aan antimaterie is officieel onbekend. Maar wetenschappers hebben wel hun vermoedens. Zo wordt gedacht dat positronen (een voorbeeld van een antideeltje, de bouwsteen van antimaterie) het resultaat zijn van twee deeltjes donkere materie die met elkaar botsen en verloren gaan.

Aanwijzingen
AMS heeft nu in een periode van anderhalf jaar heel wat kosmische straling bestudeerd. In die straling vond AMS onder meer zo’n 400.000 positronen. Ook blijkt uit de resultaten dat de hoeveelheid antideeltjes door de tijd heen niet significant varieert en dat de antideeltjes niet uit één specifieke richting lijken te komen. Stuk voor stuk aanwijzingen dat de deeltjes wel eens het resultaat kunnen zijn van deeltjes donkere materie die met elkaar botsen.

Geduld
Maar het bestaan van donkere materie is nog niet bewezen, zo benadrukken de onderzoekers. “De komende maanden zal AMS ons definitief kunnen vertellen of deze positronen een aanwijzing van donkere materie zijn of dat ze een andere oorsprong hebben,” vertelt onderzoeker Samuel Ting.

Donkere materie is één van de grootste mysteries van de moderne fysica. Iets meer dan een kwart van ons universum zou uit donkere materie bestaan, maar we hebben het nog nooit direct waargenomen. Overtuigend bewijs voor het bestaan van deze hypothetische soort materie is er dus nog niet.

‘Lege’ ruimte zit vol donkere materie

14 februari 2012    24

Nieuw onderzoek wijst erop dat lege ruimte niet bestaat. De ruimte tussen sterrenstelsels blijkt namelijk gevuld met donkere materie.

Dat schrijven onderzoekers in het blad The Astrophysical Journal. Ze baseren hun conclusies op computersimulaties.

Aan de hand van deze simulaties toonden ze aan dat donkere materie ook voorbij de randen van sterrenstelsels nog voorkomt. Het strekt zich tot ver in de ‘lege’ ruimte uit. De onderzoekers bestudeerden het effect van een zwaartekrachtlens (zie ook hieronder). Dit effect waarbij een ver object vergroot lijkt te worden, wordt mede mogelijk gemaakt door donkere materie. Door het effect te bestuderen, kon de verdeling van donkere materie worden vastgesteld. Zo ontdekten de onderzoekers dat grote slierten donkere materie zich ook nog ver buiten het sterrenstelsel bevinden. “Er is geen lege ruimte in het universum,” zo moeten de onderzoekers concluderen. “De ruimte tussen sterrenstelsels is gevuld met donkere materie.”

 

Het effect van een zwaartekrachtlens. Foto: Joerg Colberg / Ryan Scranton / Robert Lupton / SDSS.
En daarmee is een groot mysterie opgelost. Onderzoekers hadden namelijk al berekend dat het huidige universum voor zo’n 22 procent uit donkere materie bestaat. Slechts 4,5 procent bestaat uit ‘gewone’ materie. Maar die 22 procent: daar kwamen wetenschappers tijdens observaties echt niet aan. Ze misten donkere materie. Die vermiste hoeveelheid donkere materie hebben de onderzoekers nu dus teruggevonden.

Bronmateriaal:
Missing dark matter located – inter-galactic space is filled with dark matter” – IPMU.jp
De foto bovenaan dit artikel is gemaakt door Dims (via Wikimedia Commons).
door Barry van der Meer
14 Sep 2011
Voor de derde keer heeft een experiment aanwijzingen gevonden voor deeltjes die de mysterieuze donkere materie zouden vormen, …
door Manus Visser
15 Feb 2011
Een draaiende bal blijft volgens de wetten van Newton in een vacuüm eeuwig draaien. Maar volgens Spaanse onderzoekers komt zo’n …
Bronmateriaal:
Missing dark matter located – inter-galactic space is filled with dark matter” – IPMU.jp
De foto bovenaan dit artikel is gemaakt door Dims (via Wikimedia Commons).

Mysterieuze donkere energie waargenomen

Door: Germen Roding |

: 10 aug 2010

Eindelijk is het astronomen gelukt: een rechtstreekse blik op donkere energie, de mysterieuze kracht die ons heelal steeds sneller uit elkaar lijkt te scheuren.

De massa in het universum bestaat volgens de laatste theorieën uit drie belangrijke componenten: uit de bekende zichtbare, zogeheten baryonische materie (alles wat uit quarks bestaat, zoals protonen en neutronen, atomen, mensen, planeten en sterren), verder uit donkere materie (waarvan we alleen weten dat het zwaar is en nergens mee reageert, je merkt er niets van als het dwars door je heen vliegt) maar vooral uit donkere energie, een geheimzinnige kracht die nodig is om te verklaren waarom het heelal om ons heen er zo uitziet als nu.

Donkere materie
Baryonische (gewone) materie is meestal opgehoopt in lichtgevende sterren of gaswolken. Die kunnen we waarnemen door de straling die ze uitzenden: licht, radiogolven of andere elektromagnetische straling.

Een ring, veroorzaakt door donkere materie?

Een ring, veroorzaakt door donkere materie?

Donkere materie is waar te nemen door te kijken naar de zwaartekrachtsinvloed die de materie op zichtbare materie heeft. Zo verklaart donkere materie hoe het komt dat de sterren ver van het centrum van een melkweg veel sneller ronddraaien dan ze volgens de zwaartekrachtswet zouden kunnen doen. Een onzichtbare zware wolk donkere materie hangt rond de kern van de melkweg.

Die wolk trekt wel verre sterren aan, maar niet sterren die midden in de wolk hangen. In het midden houdt de zwaartekracht van de wolk ze in evenwicht: alle delen van de wolk trekken ongeveer even hard. Het resultaat: ze tollen veel minder snel rond. Daarom weten astronomen nu steeds meer over de verdeling van donkere materie: in de meeste melkwegstelsels vormt het een soort bol. Sommige melkwegstelsels bestaan vrijwel alleen maar uit donkere materie. Donkere materie biedt veel mogelijkheden. Als we die ontdekken, vinden we misschien een overvloedige energiebron of kunnen we vreemde materialen maken waarmee we bijvoorbeeld dwars door de aarde of de zon zouden kunnen reizen.

Donkere energie: onbekend, maar alles overheersend
Van donkere materie weten we al bijna niets, maar dat is nog heel veel vergeleken met wat bekend is over donkere energie, die toch meer dan zeventig procent van de massa van het heelal uitmaakt en, zo lijkt het, ons over vele miljarden jaren in stukjes uiteen dreigt te scheuren. Althans: tot nu toe. Door nieuwe waarnemingen kunnen astronomen er nu eindelijk in slagen de verhouding tussen energiedichtheid en druk van donkere energie te bepalen.

Zwaartekrachtslens Abell 1689
Een team astronomen heeft met de waarnemingen aan een cluster melkwegstelsels, Abell 1689, gedaan die zich gedraagt als een zwaartekrachtslens. De melkwegstelsels vervormen de ruimte om hen heen waardoor het licht wordt afgebogen. Het licht van de verre melkwegstelsels achter Abell 1689 heeft er miljarden jaren over gedaan om ons te bereiken.

Abell 1689, gebruikt als zwaartekrachtslens. bron: NASA/ESA

Abell 1689, gebruikt als zwaartekrachtslens. bron: NASA/ESA

In al die miljarden jaren is het heelal flink in omvang toegenomen, waardoor het licht uitgerekt is en ook van richting is veranderd. Doordat er zo twee effecten tegelijkertijd worden bestudeerd, kunnen de onderzoekers nauwkeurig waarnemen wat het effect is van de donkere energie op ruimte en tijd en welke vorm het heelal heeft.

Leven we in een vierdimensionale bol, dan worden lichtstralen naar elkaar toegebogen. Leven we in een soort vierdimensionaal zadel, dan treedt juist het omgekeerde effect op. Waarnemingen die ons leren hoe de donkere energie zich gedroeg in het verleden en heden. Klopt de theorie dat de donkere energie in het laatste derde deel van de leeftijd van het heelal in kracht toeneemt tot een orkaan, zoals kosmologen nu geloven? De astronomen zuillen nog jarenlang aan het rekenen zijn.

Wat betekent het voor ons?
Meer weten over donkere energie is niet alleen van belang om onze verre nazaten te redden van de griezelige Big Rip, waarbij zelfs atomen uit elkaar gerukt zullen worden door de totaal uit de hand gelopen donkere energie.

Als we donkere energie leren te temmen kunnen we mogelijk babyheelallen maken en voor God spelen.

Als we donkere energie leren te temmen kunnen we mogelijk babyheelallen maken en voor God spelen.

Als we er in slagen donkere energie te temmen zijn we letterlijk heer en meester over ruimte en tijd. We zouden in staat zijn sneller te reizen dan het licht, door het heelal achter ons sneller uit te laten zetten en het heelal voor ons in te laten krimpen. Een bezoekje aan andere steren of melkwegstelsels wordt dan mogelijk. Misschien kunnen we wel met donkere energie een nieuwe Big Bang veroorzaken en naar dat nieuwe heelal emigreren als hier de zaak teveel uit de hand dreigt te lopen.

Misschien heeft ET het wel te druk met zijn eigen baby-heelal om de moeite te nemen ons op te zoeken.

 

Hubble ‘ziet’ donkere materie in Abell 1689

15 november 2010 r 8

Donkere materie is niet met het blote oog zichtbaar. Toch slaagde de Hubble ruimtetelescoop erin om deze mysterieuze substantie te vinden in een ver cluster. De telescoop wierp een blik op Abell 1689, een massieve groep sterrenstelsels op een afstand van 2,2 miljard lichtjaar bij de aarde vandaan. De zwaartekracht van de sterrenstelsels zorgt ervoor dat licht afbuigt. Aangezien donkere materie verantwoordelijk is voor een groot deel van de massa, is de verdeling van donkere materie in de cluster te reconstrueren.

Abell 1689 is een gigantische gravitatielens. Sterrenstelsels die achter deze groep liggen, worden door de kosmische lens vergroot of vervormd.

Wetenschappers hebben 135 foto’s van 42 achtergrondsterrenstelsels geanalyseerd. Uit deze reconstructie blijkt dat Abell 1689 erg veel donkere materie bevat. Astronomen denken dat de cluster al vroeg begon met het verzamelen van donkere materie. Anders dan had Abell 1689 nu veel minder donkere materie gehad.

Hieronder de foto van Abell 1689. Het is er weer één om in te lijsten.

door Lydwin van Rooyen
28 Jul 2010
Slechts drie maanden nadat de deeltjesversneller Large Hadron Collider (LHC) succesvol in werking is gesteld, maken …
door Lydwin van Rooyen
02 Mrt 2010

Donkere materie

Jasem Mutlaq

Geleerden zijn er nu vrijwel zeker van dat 90% van de massa in het heelal in een vorm voorkomt die we niet kunnen zien.

Ondanks het uitgebreid in kaart brengen van het nabije heelal, in het spectrumgebied van radiogolven tot aan gammastralen (de zeer lange tot de zeer korte golflengtes), kunnen we maar 10% van de massa vinden die er aanwezig moet zijn. Zoals Bruce H. Margon, een astronoom van de Universiteit van Washington, in 2001 zei tegen de New York Times: “Het is nogal pijnlijk te moeten erkennen dat we 90 procent van het heelal niet kunnen vinden.”

De naam die aan deze “ontbrekende massa” wordt gegeven is Donkere materie, en deze twee woorden geven een heel aardig beeld van alles wat we op dit terrein weten. We weten dat er “materie” moet zijn, omdat we de effecten van de zwaartekracht ervan kunnen waarnemen. Maar deze materie zendt in het geheel geen waarneembare elektromagnetische straling uit, en is dus “donker”. Er zijn verschillende theorieën om deze ontbrekende massa te verklaren, variërend van exotische deeltjes die kleiner zijn dan atomen, tot een populatie van afzonderlijke zwarte gaten, tot minder exotische bruine en witte dwergen (kleine sterren). De term “ontbrekende massa” is misschien misleidend, omdat de massa zelf niet ontbreekt, maar alleen de elektromagnetische straling ervan. Maar wat is donkere materie nu precies, en hoe weten we nu eigenlijk dat die bestaat, als we die niet kunnen zien?

Het begon in 1933 toen de astronoom Fritz Zwicky de bewegingen onderzocht van verre en massieve (veel massa) groepen (clusters) van melkwegstelsels, met name de Coma- en Virgoclusters. Zwicky maakte een schatting van de massa van elk melkwegstelsel in de cluster op grond van de lichtkracht (totale hoeveelheid uitgezonden elektromagnetische straling), en telde al die massa’s bij elkaar op, om de totale massa van de cluster te berekenen. Daarna maakte hij een tweede, onafhankelijke schatting van de massa van de cluster, gebaseerd op de meting van de spreiding van de snelheden van de afzonderlijke stelsels in de cluster. Tot zijn verrassing was deze tweede, dynamische massa, 400 keer groter dan de schatting gebaseerd op de lichtkracht.

Hoewel al in de tijd van Zwicky de aanwijzingen sterk waren, duurde het tot in de jaren 1970 voordat de geleerden dit gebrek aan overeenstemming uitvoerig gingen onderzoeken. Het was in deze tijd dat men het bestaan van donkere materie serieus begon te nemen. Het bestaan van zulke materie zou niet alleen een verklaring geven voor het massatekort in clusters van melkwegstelsels, maar ook meer verstrekkende consequenties hebben voor de evolutie en het lot van het heelal zelf.

Noot vertaler: als er te weinig massa in het heelal is, zal het heelal steeds verder uitdijen, is er te veel massa aanwezig, dan zal de uitdijing stoppen, en het heelal daarna gaan krimpen tot …. een punt? En daar tussen in is de kritische massa, die massa waarin het uitdijen weliswaar uiteindelijk (bijna, asymptotisch) stopt, maar niet tot krimpen overgaat. Bij de thans waargenomen massa zal het heelal steeds verder uitdijen, wat sommigen geen prettig of “elegant” idee vinden, en wat dus ook leidt tot het idee van donkere materie.

Een ander fenomeen waaruit het bestaan van donkere materie blijkt zijn de rotatiekrommen van Spiraalstelsels (spiraalvormige melkwegstelsels, zoals onze eigen Melkweg, en onze buurman het Andromeda-melkwegstelsel). Spiraalstelsels hebben een groot aantal sterren, die in bijna cirkelvormige banen bewegen om het centrum, net zoals planeten rondom een ster. Net als planeten in hun baan zouden sterren die een grotere baan beschrijven, een lagere baansnelheid moeten hebben (dit is een gevolg van de derde wet van Kepler). Maar in werkelijkheid geldt de derde wet van Kepler alleen maar voor sterren nabij de rand van een spiraalstelsel, omdat de massa die door hun baan wordt omsloten als constant moet worden beschouwd.

 

 

 

Noot vertaler: Waar het op neer komt is dit: het blijkt dat de sterren veel sneller om het centrum van hun melkwegstelsel gaan dan overeenkomt met de bekende hoeveelheid massa binnen hun baan. En aangezien het de zwaartekracht is van deze massa die hen drijft moet er veel meer massa aanwezig zijn dan bekend.

Noot vertaler: Wat extra informatie: Een ster in een baan om het centrum van een melkwegstelsel wordt alleen beïnvloed door de massa binnen die baan. Men kan bewijzen dat de invloed op de ster van alle buiten de baan gelegen massa gelijk aan 0 is. Op dezelfde manier: als u in een diepe put zou afdalen naar het middelpunt der aarde, wordt uw gewicht uiteindelijk, ook als u het zou overleven, niet groter maar kleiner, omdat alleen de massa dichter bij het centrum dan u, aan u trekt. In het middelpunt zelf zou u niets wegen.

De astronomen hebben echter de baansnelheden van sterren in de buitengebieden van een groot aantal spiraalstelsels gemeten, en geen ervan volgt de derde wet van Kepler, zoals men zou mogen verwachten. In plaats van bij grotere straal kleiner te worden, blijft de baansnelheid opvallend constant. Dit betekent dat de massa die wordt omgeven door een ruimere baan, toeneemt, zelfs voor sterren die naar het schijnt nabij de buitenkant van het melkwegstelsel zijn. Omdat die dichtbij de grens van het lichtgevende deel van het melkwegstelsel zijn, heeft het stelsel kennelijk ook massa tot ver buiten de gebieden waarin de sterren voorkomen.

U kunt het ook zo beschouwen: neem de sterren dichtbij de buitenkant van een spiraalstelsel, met de waargenomen baansnelheden van 200 kilometer per seconde die typerend zijn voor dit soort sterren. Als het melkwegstelsel alleen die materie zou bevatten die we kunnen waarnemen, zouden die sterren al zeer gauw uit het stelsel wegvliegen, omdat hun baansnelheden vier keer groter zijn dan de ontsnappingssnelheid. Omdat men geen melkwegstelsels ziet die uitelkaar vliegen, moet er wel massa aanwezig naast de massa die we kunnen waarnemen.

Er zijn diverse theorieën opgedoken in de literatuur, om de ontbrekende massa te verklaren, zoals de WIMPs (Weakly Interacting Massive Particles (Zwak wisselwerkende deeltjes met een grote massa)), MACHO’s (MAssive Compact Halo Objects (Compacte halo-objecten met een grote massa, een halo is een ruim bolvormig gebied rondom het centrum van een melkwegstelsel, die niet geheel leeg is, maar onder andere bolvormige sterrenhopen bevat)), zwarte gaten die ontstonden in het nog jonge heelal, neutrino’s met (samen!) een grote massa, en andere, alle met hun voors en tegens.

Door de astronomische gemeenschap is nog geen enkele theorie aanvaard, omdat we tot dusver geen middelen hebben om die te toetsen.

Over tsjok45
Gepensioneerd . Improviserend jazzmuzikant . Instant composer. Jamsession fanaat Gentenaar in hart en nieren

2 Responses to DONKERE MATERIE

  1. pietjepak zegt:

    Het bestaan van donkere materie is onder andere af te leiden uit de draaisnelheid van sterrenstelsels. Astronomen zien ze namelijk veel sneller ronddraaien dan ze op basis van de aanwezige zichtbare materie kunnen verklaren. De buitenste sterren zouden eigenlijk uit het sterrenstelsel geslingerd moeten worden. Dat doen ze niet en daarom wordt gedacht dat er zich stiekem veel meer materie in sterrenstelsels zit dan zichtbaar is.

    Tja, als er nu eens een andere verklaring zou zijn dan de veronderstelde donkere materie, dan wordt er gezocht naar iets wat er niet is.
    Iets wat er niet is is lastig te vinden.
    Maar het zal wel zo zijn dat pas als vast staat dat die donkere materie er niet is dat naar een andere verklaring wordt gezocht.
    In 1880 in Chicago bleek de lichtsnelheid constant te zijn.
    Het duurde tot 1904 voor Einstein met een verklaring kwam, en tot 1917 voor die verklaring geaccepteerd werd.
    Zo lang wij geen idee hebben wat er in het centrum van zwarte gaten gebeurt houd ik alles voor mogelijk.

  2. Pingback: C : COSMOS | Tsjok's blog

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit / Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit / Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit / Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit / Bijwerken )

Verbinden met %s

%d bloggers op de volgende wijze: